
Conceptual Checks for Programming Teachers

Luca Chiodini1[0000−0002−2712−9248], Matthias Hauswirth1[0000−0001−5527−5931],
and Andrea Gallidabino1[0000−0003−4191−7766]

Software Institute - Università della Svizzera italiana
https://luce.si.usi.ch/

Abstract. Learning to program and learning a new programming lan-
guage is difficult because it requires learners to undergo conceptual change.
Research on conceptual change has shown that instructors’ awareness
of their students’ misconceptions can significantly affect learning out-
comes. In this demo we present “conceptual checks”, a web-based tool
that allows instructors and teaching assistants of programming courses
to quickly get an overview of the misconceptions that might come up
at a given point in their course. Based on the idea of refutation texts,
it asks users to assess the correctness of statements about programming
language concepts. We implemented conceptual checks on top of progmis-
con.org, an educational repository of programming language misconcep-
tions observed in students learning to program. The inventory currently
catalogues more than 200 misconceptions. This demonstration illustrates
conceptual checks as an efficient and effective means for instructors to
access the relevant information in the large body of misconceptions.

Keywords: Misconceptions · Programming Languages · Refutation Texts
· Self Assessment.

1 Pedagogical and Technological Background

Conceptual Change Based on constructivism, conceptual change theories have
been applied to many fields in science education. The main observation is that
learners always possess some prior knowledge, and thus learning does not always
occur by accumulating facts, but by revisiting and changing wrong conceptions.
For this reason, prior works have examined the role of misconceptions in the
learning process, positing that learning occurs precisely by overcoming those
wrong conceptions. This also justifies why learning (to program, in this case)
is so difficult: students tend not to abandon their beliefs unless there are good
reasons for doing so [5].
Refutation Texts Two decades of research on the topic of refutation texts [7]
have shown that, among text-based instruments, they stand out as a powerful
mechanism to overcome (wrong) knowledge ingrained in learners. Showing one
next to the other the “statement of a commonly held misconception, and an
explicit refutation of that misconception with an emphasis on the currently ac-
cepted scientific explanation” [7] has been proven to be more effective than just
stating the correct conception. According to studies, using a clear expository



2 Chiodini et al.

format should be preferred over a longer narrative description that can be per-
ceived as less rigorous. A good refutation text should start by clearly stating the
misconception, marking the transition with a “refutation cue” (e.g., “but this is
wrong”), and finally presenting the correct conception. Textbooks, however, do
not seem to employ them enough [7]. A variation on the theme that can more
directly engage learners are the conceptual change texts [1]. Before presenting
the correct conception, they actively involve the reader by asking to make a pre-
diction, stimulating thinking before reading the scientifically correct fact. Going
beyond text as a medium, concept cartoons, a visual version of refutation texts,
have been used in science education since the early 1990s [3].
Conceptual Checks In contrast to the existing kinds of refutation texts, the
purpose of the idea of conceptual checks introduced in this paper is not the
teaching per se, but the preparation of teachers. This different purpose has a
significant impact on the wording of the texts: misconceptions’ statements are
written using expert terminology instead of using a vocabulary more accessible
to novices. The resulting texts have then minimal ambiguity as they use proper
domain-specific terminology. In the domain of programming languages, one has
the advantage of being able to refer to their authoritative specifications.
progmiscon.org As an effort to collect and properly document misconceptions
about programming [4], we have built and we maintain progmiscon.org, a curated
inventory of programming language misconceptions [2]. Besides a unique, mem-
orable name, each misconception is characterized by an unambiguous statement
that describes, entirely in terms of the syntax and the semantics of the relevant
programming language, what is the wrong belief students hold (even though
they might not express it in those very words). Moreover, misconceptions are
accompanied with information about the possible origin (where it might come
from) and common symptoms (artifacts produced by students who hold the mis-
conception), with the goal of making educators aware of the rich body of wrong
conceptions their students might develop in their journey of learning to program.

2 Conceptual Checks in progmiscon.org

Our inventory contains, due to its own nature, precise statements about the
wrong conceptions novice learners have about how a certain language feature
works. We have augmented this data with correct statements that contrast the
incorrect ones and precisely describe what is the truly correct behavior, according
to the authoritative programming language specification.

As an example, consider the Java misconception AssignmentCopiesObject.
The statement which might be spoken by a student and describes the wrong
conception is “assignment copies the object”. Instead, the correct statement is
“assignment copies the reference pointing to the object”. By juxtaposing the
two texts, one can easily obtain a refutation text such as “Some people believe
that an assignment copies the object. That is not true: an assignment copies the
reference pointing to the object”.

However, we deemed that a list with just the refutation texts would probably
not be appealing as a reading. Taking conceptual change texts one step further,



Conceptual Checks for Programming Teachers 3

we built an interactive system in which visitors are presented with both state-
ments, the wrong and the correct one, and are challenged to make a choice and
select the one they believe to be true for a specific programming language. Only
after thinking and selecting one of the two claims, visitors can click a button to
“solve the mystery” and check whether their prediction was correct or not.

We call this process conceptual check (see Figure 1), as it can serve the
purpose of self-assessing the knowledge of a programming language, or a subset
of it, through the means of selecting what is true at a conceptual level.

Performing these checks on the whole body of misconceptions (which at the
time of writing consists of more than 200 misconceptions) is unfeasible and also
not very useful for revising. Instead, the checks can be conveniently configured
so that they target a coherent set of misconceptions. In particular, one can select
to do a check on misconceptions that pertain to a certain concept or a set of
concepts, since all misconceptions are tagged with one or more concepts derived
from the programming language field (e.g., Constructor, Expression, Type and
many more); or a check on misconceptions that can be potentially induced by
reading specific sections of a textbook, since they are also indexed by popular
books used for teaching (only Java is supported at the moment).

3 Use Cases and Next Steps

Out Of Scope Asking novices to assess the correctness of conceptual state-
ments such as “references can point to variables” can be problematic: novices do
not just lack the expert terminology (e.g., the term “variable”), but for domains
they are entirely unfamiliar with, they may not have any vocabulary at all (e.g.,
no word to denote the idea of a “variable”). Thus, when assessing the conceptual
understanding of novices, conceptual questions are often too abstract and devoid
of meaning, and there may be no rephrasing of the questions in the students’
own words. To best assess novices, questions based on concrete examples and
situations, like the kinds of questions used in concept inventories, are necessary.
Thus conceptual checks are not targeted at students, but at teachers. Teachers,
unlike their students, usually already possess the necessary domain vocabulary.
Teacher training Teachers are often confronted with students who struggle to
grasp certain concepts. It has been shown that timely feedback is a key element
for overcoming students’ difficulties and wrong conceptions. It is even better if
one could prevent those wrong conceptions from forming in the very first place,
since once a knowledge element becomes familiar for a learner, it becomes dif-
ficult to replace it with the correct knowledge. For these reasons, pedagogical
content knowledge includes knowledge about misconceptions [6]. When teachers
know which misconceptions are likely to be developed, they can quickly recog-
nize them and put in place a variety of strategies to deal with them, including
devoting classroom time to address common issues, preparing or selecting extra
material, and tailoring assignments. The explicit discussion of misconceptions
during courses to train current or future teachers can thus be highly beneficial.
Instructor preparation for a lecture Instructors benefit from remembering
what misconceptions might pop up in a specific lecture of their course, as they



4 Chiodini et al.

Fig. 1. The Concept Map allows teachers to configure a conceptual check by selecting
a combination of concepts on which to be checked. The conceptual check then presents
conceptual change text questions to the teachers. This provides them with an effective
and efficient way to assess their own conceptual understanding and reminds them of
the potential misconceptions students could hold about the chosen concepts.



Conceptual Checks for Programming Teachers 5

can exploit tactics to challenge them or even anticipate them. When lectures are
synchronized with a specific chapter of a book, instructors can take advantage
of checks that focus exclusively on the contents of that chapter.
TA preparation for a course Many universities employ students as teaching
assistants (TAs) to help instructors in the courses they teach. Conceptual checks
offer a quick and effective opportunity to revise the course material for being
better prepared to answer students’ questions and being able to remedy their
incorrect understandings. Moreover, given external constraints, it can happen
that students are assigned to courses outside their specific area of expertise (for
example, a doctoral student whose research interests lie in machine learning
could be needed in an undergraduate course in introductory programming). In
such cases, learning about misconceptions is even more important.

We hope that this tool will further increase teacher’s awareness of the mul-
titude of programming language misconceptions that have been the subject of
research studies in the last decades. The goal is that this increased awareness
about specific misconceptions can then translate into improved teaching. We ex-
plicitly welcome suggestions and new contributors to progmiscon.org, to improve
the quality and the quantity of conceptual checks, foster the community around
it, and increase the value for educators all around the world.

References

1. Chambers, S.K., Andre, T.: Gender, prior knowledge, interest, and experience
in electricity and conceptual change text manipulations in learning about di-
rect current. Journal of Research in Science Teaching 34(2), 107–123 (1997).
https://doi.org/10.1002/(SICI)1098-2736(199702)34:2¡107::AID-TEA2¿3.0.CO;2-X

2. Chiodini, L., Moreno Santos, I., Gallidabino, A., Tafliovich, A., Santos, A.L.,
Hauswirth, M.: A Curated Inventory of Programming Language Misconcep-
tions. In: Proceedings of the 26th ACM Conference on Innovation and Tech-
nology in Computer Science Education V. 1. pp. 380–386. ITiCSE ’21,
Association for Computing Machinery, New York, NY, USA (Jun 2021).
https://doi.org/10.1145/3430665.3456343

3. Keogh, B., Naylor, S.: Concept cartoons, teaching and learning in science: An
evaluation. International Journal of Science Education 21(4), 431–446 (Apr 1999).
https://doi.org/10.1080/095006999290642

4. Qian, Y., Lehman, J.: Students’ Misconceptions and Other Difficulties in Introduc-
tory Programming: A Literature Review. ACM Transactions on Computing Educa-
tion 18(1), 1–24 (Oct 2017). https://doi.org/10.1145/3077618

5. Sawyer, R.K. (ed.): The Cambridge Handbook of the Learning Sciences. Cambridge
Handbooks in Psychology, Cambridge University Press, Cambridge, second edn.
(2014). https://doi.org/10.1017/CBO9781139519526

6. Shulman, L.S.: Those Who Understand: Knowledge Growth
in Teaching. Educational Researcher 15(2), 4–14 (Feb 1986).
https://doi.org/10.3102/0013189X015002004

7. Tippett, C.D.: Refutation Text in Science Education: A Review of Two Decades of
Research. International Journal of Science and Mathematics Education 8(6), 951–
970 (Dec 2010). https://doi.org/10.1007/s10763-010-9203-x


