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ABSTRACT
To evaluate novel pedagogies, approaches, and tools, Computer
Science Education researchers often conduct experiments to look
for differences among groups treated with different interventions.
The methodological rigor of such experiments affects the sound-
ness of the conclusions the researchers can draw. In this paper
we focus on a central aspect of such experimental research: the
instruments used to assess participants’ knowledge. Specifically,
we study the use of ad hoc instruments and the risks due to their in-
sufficient validation. We present a literature survey that highlights
how, even though standardized instruments exist, the majority of
published experiments in the last five years at major Computer
Science Education conferences carries out pre/post-tests using ad
hoc instruments, often with multiple-choice as question type. We
demonstrate the risks of such commonly used but insufficiently
validated multiple-choice instruments. We propose a richer way to
analyze and assess the correctness of answers to multiple-choice
questions, requiring participants to add brief explanation texts as
a justification of each answer. We run an experiment and analyze
the collected answers using the two approaches, with and without
explanations, to show that the risk of drawing opposite conclusions
from the statistical analysis is real.
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1 INTRODUCTION
Since its very early days, Computer Science Education research
has been concerned with providing empirical evidence to support
innovations. In 2004, Fincher and Petre [14] highlighted theory and
evidence as the two key dimensions that can be used to characterize
research published in the area. They posited that good science
should be rigorously backed both by appropriate theories and solid
evidence, and that the field was still relatively immature. After
more than ten years, Al-Zubidy et al. [1] performed an analysis that
showed an increased adoption of methods that include empirical
validation, observing an improvement: up to three times more
papers provided such evidence, compared to previous findings [47].

Concerns about methodological rigor in Computer Science Ed-
ucation are still far from being over, though. Lishinski et al. [23]
analyzed research published in a leading journal and a leading con-
ference and discovered that newly published research seems to rely
more often on theories, and that the “focus on empirical results in
conference proceedings articles has surpassed that of journal pub-
lications”. Despite this, they find that overall the methodological
quality shows limited improvement.

The primary way in which novel pedagogies, approaches, and
tools are evaluated beyond anecdotal reports is through experi-
ments carried out with learners. Researchers design experiments
in various ways, depending on which research questions they are
trying to reason about and the practical constraints that are im-
posed by the real world. Those include, as examples, the number of
students and classrooms reachable with a reasonable effort by the
researcher, ethical concerns about putting a fraction of the studied
population at a disadvantage when one other intervention is known
to be likely effective, or the minimization of the disruption imposed
by running the study in a regular university course or school class.

1.1 Standardized vs. ad hoc instruments
One of the key elements required to sustain rigorous experiments in
education is the instrument used to assess participants’ knowledge
on one or more specific topics. Measurement validity (i.e., ensuring
that we are measuring what we think we are measuring) and relia-
bility (i.e., the instrument yields consistent measures) are important
aspects to consider when choosing or designing an instrument.
Margulieux [26] highlights that “how education researchers chose
and implement measurements can have a meaningful impact on
the validity and reliability of their findings”. She calls for more
standardization of instruments, because that would both “affords
comparisons among studies” and “improves measurement tools
by assessing their reliability and validity” [26]. In the rest of this
paper, we adopt the term standardized instrument in this latter
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Figure 1: Trade-off between instrument scope and density.

meaning. Barkmin and Brinda [4] also stress the importance of us-
ing objective, reliable and validated instruments (i.e., standardized
instruments). Worryingly, while reviewing programming assess-
ments, they found that 10 out of 26 did not discuss reliability and
that only 5 explicitly addressed validity.

One category of such standardized instruments consists of con-
cept inventories, a prime way to assess students’ knowledge, skills,
and beliefs. Concept inventories contain questions in the form of
multiple-choice items, address common misconceptions, constitute
a reliable and validated instrument, and thus can also be adminis-
tered as a post-test in experiments [2].

In the last years, the lack of concept inventories for Computer
Science has been addressed by various pieces of work, ranging
from relatively broad assessments to slightly more specific ones.
Prominent examples include the SCS1 [33] for a general CS1 inven-
tory, and BDSI for one targeted at basic data structures [35]. We

believe that, even though public concept inventories and other stan-
dardized instruments exist, researchers still resort to developing
their own custom instruments, which we call ad hoc instruments
(in contrast to the standardized ones), because finding a suitable
one is in general not so easy.

1.2 Scope and density of instruments
When selecting or designing instruments researchers have to deal
with the trade-off between their scope and their density (Figure 1).
The scope of an instrument represents the extent of the area it
covers (e.g., all imperative programming skills, vs. skills related to
variables). Its density determines how well its questions cover their
scope with questions: low-density instruments cover the scope with
a small number of questions while high-density instruments use
many questions to cover most aspects within the scope.
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Together, the scope and density of the instrument determine
its duration (e.g., the time it takes to administer it, which is often
correlated to the number of questions). Short instruments may
neither cover a meaningful scope nor cover their scope with a
useful density. Long instruments may cover a wide scope at a high
density, but as a result they need to include a large number of
questions and thus may have a long duration (as well as a high
development cost). The more realistic instruments either have a
narrow scope and a high density, or a wide scope and a low density.
Some concept inventories fall into the wide scope and low density
area: they cover a reasonably wide scope (so as to be more generally
useful), but they have to limit the number of questions (so as to not
take an excessive amount of time). To conduct an experiment with a
narrow focus, researchers look for instruments with a narrow scope
but a high density, and when they cannot find such instruments,
create their own ad hoc instrument instead.

In this paper we focus on one of the most prevalent types of
instrument: collections of multiple-choice questions (MCQs). Not
only are MCQs easy to administer and easy to grade (potentially
even automatically), but they also are heavily used in standardized
instruments such as concept inventories [2]. We bring the following
contributions:

(1) a literature survey that demonstrates the prevalence of the
multiple-choice question type in experiments published at
major Computer Science Education venues (Section 2),

(2) a discussion of a way to analyze answers to such questions
that takes into account explanation texts (Section 3), and

(3) experimental evidence that ignoring explanations carries the
concrete risk of undermining conclusions based on statistical
tests (Section 4 and 5).

2 EXPERIMENTS AND INSTRUMENTS
2.1 Literature survey
To understand which kinds of experiments and assessments instru-
ments researchers use to evaluate innovations in Computer Science
Education, we conducted a literature survey. Inclusion criteria were
research papers published at ICER, ITiCSE and Koli Calling (three
main conferences whose proceedings are published on the ACM
Digital Library) in the past five years, from 2016 to 2020 (inclusive),
containing the word “posttest” or “post-test” in the full-text.

The initial set contained 64 papers in total. We then filtered
the results to exclude papers spuriously included for a variety of
wrong reasons, among which those whose core is (i) a literature
review, (ii) the development of a concept inventory, (iii) just based
on observations, (iv) not focused on content knowledge, or that
more broadly do not describe an experiment. This selection yielded
31 papers broken down as shown in Table 1.

We made our best effort to characterize the main experiment de-
scribed in those papers. Some of them, in addition to the knowledge
pertaining to one or more Computer Science topics, report on other
related aspects, such as the user evaluation of a tool, motivation,
and intention to persist. The analysis presented here just focuses
on the content knowledge, both in terms of the experiment and the
assessment.

Table 1: Number of papers per conference (and in total) in-
cluded in the literature survey.

Conference Initial search After filtering
ICER 18 11
ITiCSE 34 15
Koli Calling 12 5
Total 64 31

We captured in Table 2 two dimensions: the design of the exper-
iment and the type of instrument used to assess students’ under-
standing. On the experimental design aspect, we observe that only
7 out of 31 papers (23%) use a post-test only methodology, and that
only 4 (13%) are not controlling the treatment condition with at
least another condition. On the instrument used for the assessment,
we focus on which kind of instrument has been used, classifying it
into three categories:

• CI, when the instrument is a published concept inventory;
• Course, when the performance in various assessments nor-
mally administered during the course (e.g., a midterm exam,
a final exam, or graded assignments) is recorded and used as
instrument;

• Ad hoc, in all the other cases in which an instrument has
been devised specifically for the purpose of the study1. Ad
hoc instruments can have different question types: multiple-
choice (abbreviated with MC in the table), short answers that
might possibly be automatically graded, Parsons or coding
problems, or custom exercises.

While concept inventories are considered the preferred way to
conduct an assessment, because their validity and reliability have
been previously evaluated, results from Table 2 indicate a very
different reality. Out of 31 experiments, just 2 (6%) use a published
concept inventory as instrument: Nelson et al. [32] use SCS1 [33],
and Hinckle et al. [18] use MG-CSCI [36]. The remaining vast
majority of papers (29 out of 31, 94%) use either assessments that
are normally part of a course or that have been prepared ad hoc for
the experiment.

We looked for explanations of this phenomenon in the papers
which use an ad hoc instrument, but we could not find explicit
arguments supporting the choice. Some of the reasons might trace
back to a general lack of validated assessments in Computer Science
due to some unique characteristics of the discipline [52], as well as
a specific lack of concept inventories that go beyond the standard
CS1 course, only partially addressed in recent years (e.g., with the
BSDI concept inventory for basic data structures [35]).

Another reason might be attributed to the historical reluctance
to publicly share instruments developed ad hoc for specific experi-
ments. Out of 26 papers in that category, only 4 (15%) released the
integral instrument. We acknowledge that concerns about instru-
ment re-usability may affect the decision of the release, but we also
clearly note that the current standard hinders the progress of the

1When researchers use course assessments just as an additional proxy metric to further
evaluate students’ performance, we still attribute the instrument used to the ad hoc
category.
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Table 2: Literature survey of papers that describe experiments in the past five years at three CSE conferences.
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ICER ’20 Marwan et al. [27] Yes 2 Pre+Post No Ad hoc (MC + programming)
ICER ’19 DesPortes and DiSalvo [9] Yes 2 Pre+Post No Ad hoc (draw circuits + MC)
ICER ’19 Zhi et al. [54] No 2 Post only No Course (assignments + project)
ICER ’19 Marwan et al. [28] Yes 3 Only post No Ad hoc (programming)
ICER ’18 Ericson et al. [11] Yes 4 Pre+Post No Ad hoc (MC + fix code + Parsons + write)
ICER ’18 Gusukuma et al. [16] No 2 Only post No Ad hoc (MC + programming)
ICER ’17 Miljanovic and Bradbury [29] / 1 Pre+Post No Ad hoc (MC)
ICER ’17 Morrison [30] Yes 3 Only post No Ad hoc (MC and open questions)
ICER ’17 Margulieux and Catrambone [25] Yes 6 Pre+Post No Ad hoc (MC + AppInventor problems)
ICER ’17 Nelson et al. [32] Yes 6 Pre+Post / CI (SCS1)
ICER ’16 Morrison et al. [31] Yes 2 Pre+Post No Ad hoc (MC)
ITiCSE ’20 Kennedy et al. [21] No 4 Pre+Post No Ad hoc (MC)
ITiCSE ’20 Smith and Rixner [42] Yes 2 Only post No Ad hoc (determine complexity)
ITiCSE ’20 Anane and Alshammari [3] Yes 2 Pre+Post No Ad hoc (MC)
ITiCSE ’20 Domínguez et al. [10] No 3 Pre+Post No Course (MC + exams)
ITiCSE ’20 Hinckle et al. [18] / 1 Pre+Post / CI (MG-CSCI)
ITiCSE ’19 Soosai et al. [44] No 2 Pre+Post Yes Ad hoc (open questions)
ITiCSE ’19 Fessard et al. [13] No 2 Pre+Post No Ad hoc (MC + programming)
ITiCSE ’19 Walker et al. [49] / 1 Pre+Post No Course (MC in midterm)
ITiCSE ’18 Stephens-Martinez and Fox [45] Yes 3 Only post No Ad hoc (short answer)
ITiCSE ’18 Soltanpoor et al. [43] No 2 Pre+Post No Ad hoc (short answer)
ITiCSE ’17 Haidry et al. [17] Yes 3 Pre+Post No Ad hoc (extract requirements)
ITiCSE ’17 Cao and Porter [5] Yes 2 Pre+Post No Ad hoc (MC/short answer)
ITiCSE ’17 Scott and Ghinea [40] Yes 2 Pre+Post No Ad hoc (MC)
ITiCSE ’17 Wang et al. [50] No 2 Pre+Post Yes Ad hoc (MC/short answer)
ITiCSE ’16 Kumar [22] Yes 2 Pre+Post No Ad hoc (exercises using the tool)
Koli Calling ’20 Zavgorodniaia et al. [53] Yes 3 Only post No Ad hoc (trace + MC)
Koli Calling ’20 Tsarava et al. [46] No 2 Pre+Post Yes Ad hoc (MC)
Koli Calling ’19 Raj et al. [37] No 2 Pre+Post Yes Ad hoc (short answer)
Koli Calling ’18 Hosseini et al. [19] / 1 Pre+Post No Ad hoc (write + Parsons)
Koli Calling ’17 Ericson et al. [12] Yes 3 Pre+Post No Ad hoc (MC + fix + Parsons + write)

research field. When researchers share their instruments, others
may suggest improvements, produce refined versions, assess the
validity and reliability, and reproduce results. Lastly, and possibly
more importantly, experiments target a very specific and narrow
set of concepts and skills, and they need to be backed by equally
focused instruments (narrow scope, high density). Concept inven-
tories are often pseudocode-based (e.g., SCS1 [33] and BDSI [35]).
This can broaden their applicability, but at the same time it can
reduce their usefulness in contexts that rely on a specific program-
ming language. This also applies to the experiment reported in

2Whether participants have been randomly (at an individual granularity) allocated to
one of the conditions.
3A condition may comprise multiple “groups” that, nonetheless, undergo the same
treatment.
4Whether the instrument has been fully released, as a separate resource or described
in its entirety within the paper.

Section 4 that targets expressions, a concept that is valuable in a
lot of programming languages and paradigms, but that depends
on the specific knowledge of a specific programming language to
determine whether a certain piece of source code is syntactically
valid or to determine the semantic meaning of a construct. Existing
concept inventories for programming tend instead to be wide in
scope and low in density, conflicting with requirements.

These remarks are also reported in the literature. Decker and
McGill hypothesize in their review [7] that the reason for the low
adoption of standardized instruments may be the “lack of knowl-
edge of the value of using an existing instrument” or “the challenge
of finding such instruments”.

For these reasons, efforts to collect, organize and present infor-
mation about instruments in Computer Science are particularly
valuable. We highlight two important collections: csedresearch.org,

https://csedresearch.org
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a repository of computing education research instruments, and the
list of programming assessments curated by Barkmin and Brinda [4].
They were built for different reasons and thus have a different fo-
cus. The former, at the time of this writing, lists 133 instruments
in the “Computing” focus area, but only 6 instruments related to
programming (i.e., classified as “CS 1 Concepts”, “Programming”,
“Conditional Logic”, “Functions”, “Loops”, or “Variables”). The latter
contains instead only “programming assessments”, classified using
Barkmin’s competency model.

2.2 Validity of ad hoc instruments
Table 2 shows the prevalence of ad hoc instruments in published
experiments. When administering this kind of instruments, unlike
a concept inventory whose validity has already been established,
researchers should take particular care to get results that can be
trusted. The extent to which the validity of such instruments is
discussed varies greatly. We could find the following (non mutually
exclusive) different approaches. Instruments have been:

• based on previously published assessments (e.g., [27] and [11]);
• tested in a pilot study with a smaller sample of students
(e.g., [12] and [40]);

• “validated” by knowledgeable people in the domain (e.g.,
computer security experts in [3] and TAs in [40]);

• administered with a concurrent think-aloud with a subset of
the students (e.g., [9]).

Despite the importance of the matter, in the majority of the pa-
pers analyzed in the survey researchers do not question the validity
of the instrument they are using. In combination with the widely
used multiple-choice type for questions, this seemingly innocu-
ous approach can undermine experimental results. We proceed by
proposing a richer way to analyze MCQs, and then showing in
Section 4 a proof of the risk of not doing it using data from a real
experiment we conducted.

3 ANALYZING MULTIPLE-CHOICE
QUESTIONS

MCQs are often used in teaching and research. In teaching, to assess
students in courses like CS1 [24], where the number of enrolled stu-
dents is constantly increasing, the possibility to automatically grade
the large number of answers is appealing. In quantitative research,
to “have sufficient statistical power to detect at least medium-sized
effects and allow for attrition” [38], it is important to recruit a large
number of participants. However, bigger numbers imply significant
costs, in terms of time and/or money, if the scoring of the ques-
tions cannot be automated. For this reason, MCQs are an attractive
option.

MCQs are also believed to constitute an objective way of as-
sessing knowledge [24], provided that enough care is put into the
preparation of the items. Woodford and Bancroft [51] provide sug-
gestions for writing effective MCQs.

In this paper we limit our discussion to the most common type of
MCQs, in which only one option is meant to be selected as the cor-
rect answer. Multiple-answer MCQs have also been proposed [34]
to overcome the limited solution space of single-answer ones, but
they are less commonly used and fall outside the scope of this work.

3.1 Missing answers
To guide our reasoning throughout the remainder of this discussion,
we will use a simple scheme to categorize answers to MCQs. Specif-
ically, we classify each answer to a MCQ into one of the following
three categories:

MC-Correct The answer matches the correct option (often re-
ferred to as the “key”).

MC-Wrong The answer does not match the correct option.
MC-Missing No answer is provided.

We explicitly bring up theMC-Missing category, which is fun-
damentally different from theMC-Wrong one. Researchers seem
to neglect this distinction: all the papers analyzed in our review
did not explicitly comment on the presence and the treatment of
such cases (with the sole exception of [40] in which is reported that
“there were no cases with missing data”).

Tests are mainly administered using two different formats: pen-
and-paper and electronic. In the first case, instructors cannot easily
control what students will do: there is the possibility of leaving one
or more questions blank for a variety of reasons. Recurring reasons
include: (i) students who are uncertain about the right answer
and do not want to express an “educated guess”; (ii) students who
completely lack the knowledge required to answer and do not want
to express a “wild guess”; (iii) students who run out of time and leave
behind some questions (not necessarily a contiguous block at the
end of the test); and (iv) students who might simply not pay enough
care and forget to answer some questions. Some of these scenarios
also happen when questions are administered electronically, such
as when the “mandatory answer” policy is not strictly enforced, or
in the case of assessments that were not completed due to timing
constraints.

It is important not to collapse MC-Missing into MC-Wrong
because one might want to award different points for such answers
(e.g., penalizingwrong answers but ignoring empty ones). Moreover,
to allow reproducibility, researchers should always state how they
deal with challenges (missing data points in this case).

3.2 Explain your reasoning
In the survey presented in Section 2, one paper stood out for taking a
particular approach in combination with MCQs. Kennedy et al. [21]
asked participants to “explain their reasoning”, that is to write a
brief sentence or paragraph on why they chose a particular option.
Kennedy already employed this approach as one of the possible
methodologies to elicit misconceptions from students [20].

We argue that pairing every MCQ with an explanation can pro-
vide invaluable insights into what is really going on inside students’
minds, in ways that are not obtainable just from MCQs alone.

Focusing only on a free-text explanation, its assessment can be
divided into four main categories:

Expl-Correct The explanation showswith enough strength that
the student has the correct understanding required to solve
the question.

Expl-Imprecise The explanation is clearly insufficient by itself
to support a correct answer.

Expl-Wrong The explanation shows with enough strength that
the student has the wrong understanding with respect to
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the question posed and thus cannot properly answer the
question.

Expl-Missing No (or nonsensical) explanation is provided.

When the multiple-choice answer is considered in conjunction
with the explanation, the combinations between the answer pro-
vided to the MCQ and the explanation text generate 3 × 4 = 12
cases, which are summarized in Table 3, and deserve a detailed
discussion.

Each cell in the table describes the overall category attributed to
the answer as a whole (multiple-choice and explanation), essentially
using the rich information provided in the explanation to “correct”
or “triangulate” the answer given to the MCQ. We now discuss each
row of Table 3 in order.

When students write a correct explanation (Expl-Correct), they
have also probably selected the right option in the MCQ, and in
that case the final judgment obviously treats the overall answer as
correct (Correct). However, even with a correct explanation, in
some cases the answer given to the MCQ is wrong. That is possibly
due to contrived distractors or to students’ inattention in selecting
the option they really wanted to select, even though the explanation
clearly shows that they have the proper understanding. We refer to
the outcome in those cases using ProperExpl.

When students write a clearly imprecise explanation (Expl-
Imprecise), one cannot assess with enough confidence their under-
standing, solely basing on the explanation. One thus has to rely
upon the option selected in the MCQ.

When students write a wrong explanation (Expl-Wrong), they
have also probably selected a wrong option in the MCQ, and the fi-
nal judgment obviously treats the overall answer aswrong (Wrong).
However, even with a wrong explanation, in some cases the answer
given to the MCQ is correct. That is possibly due to a sequence of
cancelling errors (Varney [48] recorded six cancelling errors from
one student in an equation included in a MCQ), or students’ inat-
tention in selecting the option they really wanted to select, even
though the explanation clearly shows that they did not perform
the appropriate reasoning for reaching that conclusion. We call the
outcome for this case BadExpl.

Finally, students might leave the explanation blank for a variety
of reasons, including a shortage of time. While one cannot then
gain insights about the reasoning made for wrong multiple-choice
answers, it is worrying when it is not possible to determine whether
the correct answer to the MCQ was given based on a proper un-
derstanding. We label NoExpl the case in which the answer to the
MCQ was nonetheless correct.

In a perfect setup, only the combinations MC-Correct + Expl-
Correct andMC-Wrong + Expl-Wrong would occur: students
either select the right option after a proper chain of logically con-
nected arguments that are then reported in written form in the
explanation, or they select a wrong option due to some missing or
wrong knowledge that is then reflected in the explanation. Unfor-
tunately, this is hardly ever the case: administering assessments
often results in non-ideal scenarios that still need to be managed.

We could not find literature references that explained how they
dealt with such cases. Table 4 summarizes our best attempt, which

we do not claim to be the only possible one, to reach a final deci-
sion on whether to award points to a certain answer, based on the
combinations illustrated in Table 3.

We contrast it (first row of Table 4) with the usual approach
in which students are just asked to answer to a MCQ without
providing explanations.

When we believe the overall answer should be considered cor-
rect, a + is indicated. On the contrary, when an answer should be
considered overall incorrect, we indicate a −. We limit ourselves
to this binary classification for simplicity, considering missing an-
swers as wrong. This is just one of the possible choices, as one
might want to penalize wrong answers and treat neutrally the ones
that are missing, or might want to discard entirely submissions
that contain missing answers because, for instance, the researcher
believes they would threaten the validity of an experiment. We urge
researchers, no matter how they decide to proceed, to clearly state
how they treat such cases in the reports on their experiments.

Looking at Table 4, there are four cases (highlighted in yellow)
in which the final judgment on the correctness of an answer differs
from the one attributed just by looking at the selected option in
the multiple-choice item. In two cases, when the explanation is
either wrong (Expl-Wrong) or missing (Expl-Missing), one (hu-
man or automated system) would judge the multiple-choice answer
as correct and thus awards points, which is unfair because a stu-
dent has not shown that they possess the required knowledge. In
the other two cases, when the explanation would well support a
correct reasoning (Expl-Correct), but the answer to the MCQ is
wrong (MC-Wrong) or missing (MC-Missing), one would deem
the multiple-choice answer incorrect and thus not award points, or
award negative points, which is again unfair because the student
has shown that they possess the required knowledge.

Obviously, these cases do not occur with very high frequency.
However, their prevalence is probably bigger than what one would
expect. As an example, we report in Section 4.3 the distribution of
such cases in the pre-test of an experiment.

To illustrate with a concrete example sample answers that fall
in the aforementioned categories, consider this MCQ that is part of
the ad hoc instrument we developed for the experiment described
in the next section. Given this Java class
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MC-Correct MC-Wrong MC-Missing

(multiple-choice only) + - -
Expl-Correct + + +
Expl-Imprecise + - -
Expl-Wrong - - -
Expl-Missing - - -

Table 4. Final judgment accounting for combinations of multiple-choice answers (columns) and explanations (rows).

answers and treat neutrally the ones that are missing, or might want to discard entirely submissions that contain
missing answers because, for instance, the researcher believes they would threaten the validity of an experiment. We
urge researchers, no matter how they decide to proceed, to clearly state how they treat such cases in the reports on
their experiments.

Looking at Table 4, there are four cases (highlighted in yellow) in which the final judgment on the correctness of an
answer differs from the one attributed just by looking at the selected option in the multiple-choice item. In two cases,
when the explanation is either wrong (Expl-Wrong) or missing (Expl-Missing), one (human or automated system)
would judge the multiple-choice answer as correct and thus awards points, which is unfair because a student has not
shown that they possess the required knowledge. In the other two cases, when the explanation would well support a
correct reasoning (Expl-Correct), but the answer to the MCQ is wrong (MC-Wrong) or missing (MC-Missing), one
would deem the multiple-choice answer incorrect and thus not award points, or award negative points, which is again
unfair because the student has shown that they possess the required knowledge.

Obviously, these cases do not occur with very high frequency. However, their prevalence is probably bigger than
what one would expect. As an example, we report in Section 4.3 the distribution of such cases in the pre-test of an
experiment.

To illustrate with a concrete example sample answers that fall in the aforementioned categories, consider this MCQ
that is part of the ad hoc instrument we developed for the experiment described in the next section. Given this Java class

public class Demo {

public static void run() {

int currentX = 1280;

int baseX = 1000;

System.out.println("Spaceship X-position: " + currentX - baseX);

}

}

the question asks participants to select which one of the following options is true: (i) the compilation succeeds and
an output message is printed on the screen after executing Demo.run() (ii) there is a compilation error (iii) there is a
runtime error.

The correct answer is that a compilation error occurs: the compiler statically knows that the + operator will produce
a value of type String, and that then the - operator cannot work when the first operand has type String and the
second one int.

One student selected the first option in the MCQ (which would be classified asMC-Wrong), but wrote the following
explanation that well supports the correct reasoning: “Since there is a String in the print statement first, everything after
it will be handled as a String. Therefore the only operator valid is ‘+’ to concatenate Strings.” With a rather high degree
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Table 3: Categories for combinations of multiple-choice answers (columns) and explanations (rows).

MC-Correct MC-Wrong MC-Missing

Expl-Correct Correct ProperExpl ProperExpl
Expl-Imprecise Correct Wrong Missing
Expl-Wrong BadExpl Wrong Missing
Expl-Missing NoExpl Wrong Missing

Table 4: Final judgment accounting for combinations of multiple-choice answers (columns) and explanations (rows).

MC-Correct MC-Wrong MC-Missing

(multiple-choice only) + - -
Expl-Correct + + +
Expl-Imprecise + - -
Expl-Wrong - - -
Expl-Missing - - -

print statement first, everything after it will be handled as a String.
Therefore the only operator valid is ‘+’ to concatenate Strings.”
With a rather high degree of confidence, we can classify this as
Expl-Correct. The resulting combination is thus an instance of
the ProperExpl category.

Conversely, the following are three instances that belong to the
BadExpl category. All the three students selected the second option
in the MCQ (classified as MC-Correct), but wrote wrong expla-
nations: “you can’t use - inside the println”, “+currentX is invalid”,
and “you cannot compute operations inside a System.out.println()”.

When MCQs are used in the context of a formative or summative
assessment, the mistakes brought up in the previous paragraph
might affect students’ grades. When MCQs are instead used in a
research instrument, these mistakes affect experimental results, to
the extreme of flipping the findings resulting from statistical tests.
We give a proof of this risk in the next section.

4 EXPERIMENT
We now illustrate the risks of relying on insufficiently validated
MCQs instruments. We show this based on the example of a con-
trolled experiment that uses a pre-/post-test to measure students’
understanding of expressions. The goal of the experiment is to eval-
uate an intervention that presumably helps to teach expressions.
The scope of this experiment, a certain subset of expressions in Java,
is too narrow for standardized instruments. Thus, the development
and use of an ad hoc instrument is necessary.

Expressions are considered an important topic of a Computer
Science curriculum: after extensive Delphi processes, Goldman
et al. [15] report on the high importance experts attribute to the
two topics “construct/evaluate Boolean expressions” and “writing
expressions for conditionals”. Expressions however are not limited
to arithmetic and conditions: a fragment of source code is normally
full of expressions. Two small but illustrative examples in Java are
“Method Invocation Expressions” and “Array Access Expressions”5.
We believe that profoundly understanding expressions in terms of

5The authoritative Java Language Specification dedicates a whole chapter to explain
all the kinds of expressions present in the language.

composing sub-expressions can greatly help students increase their
conceptual knowledge.

We considered two different modalities (whose description is
irrelevant for the scope of this paper) to augment the source code
and highlight the nested structure of expressions. We will use Text
to refer to the text-based modality, and Graphic to refer to the
graphical one.

4.1 Experimental design
To verify whether one of the two modalities to teach expressions
works better than the other one, we designed and conducted an
experiment. We used a between-subjects experimental design, ran-
domly assigning participants to two groups that differed only for
the learning phase constituted by video-based explanations, worked
examples and small exercises. The study procedure consisted of a
pre-test, followed by the teaching intervention that used either the
Text modality or the Graphic one to explain how expressions are
constructed and evaluated in Java, and finally a post-test.

The pre-test consisted of 14 MCQs that asked students to predict
what would happen after compiling one or more Java classes and
executing Demo.run() (a static method always present that played
the role of the “main” method). One of these questions6 was pre-
sented at the end of Section 3.2. All of them had the same three
options as possible answers (successful execution7, compilation
error, runtime error). We awarded one point for correct answers
and zero points for wrong or missing answers. Each question is
designed to target primarily, but not exclusively, a Java misconcep-
tion. We considered for inclusion Java misconceptions from the
progmiscon.org inventory [6] that are tagged with the “Expression”
concept.

6The full set of questions is available at https://zenodo.org/record/5118719/files/
questions.md
7When students chose this first option, they had, in addition, to specify exactly what
the output would be, and the answer was awarded the point only when also the output
was correct.

https://zenodo.org/record/5118719/files/questions.md
https://zenodo.org/record/5118719/files/questions.md
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The test was administered electronically through Moodle and
was limited to 45 minutes. The same format with the same questions
was also used as a post-test.

We recruited as participants students enrolled in a second-semester
course focused on teaching Object-Oriented Programming with
Java as a programming language. The experiment was conducted
during one of the sessions normally used in the course. The par-
ticipation in the study, which meant students’ data collected and
included in this research, was voluntary. Double points in the “par-
ticipation” component of the final grade were awarded to those
who consented to share their data for this research. The study was
approved by the ethics committee.

We collected from participants who agreed to be part of the
research study 44 pre-tests but only 40 valid post-tests, as some stu-
dents did not complete the whole process or submitted an entirely
empty post-test. Out of N = 40 participants, 21 were randomly
assigned to the Text condition, and the remaining 19 students to
the Graphic one.

The null hypothesis H0 states that there is no difference in terms
of average score between the two modalities. Conversely, Ha states
that there is a difference in terms of average score between the two
modalities. Given that N is not large and that we cannot assume
a normal distribution, we use nonparametric statistical tests. We
set α = 0.05 as significance level. Results on the pre/post-test are
reported as average ± standard deviation. As one point is awarded
per correct question and there are no penalties, scores can range
from 0 to 14.

4.2 Results using answers without
explanations

The results reported in this section only depend on analyzing the
answers given to the MCQs.

In the pre-test, participants in the Text condition scored an
average of 9.81± 3.03 points. In the Graphic condition, the average
number of points was 9.68± 2.11. A Mann-Whitney U test reported
no statistically significant differences between the two conditions
(p = 0.3406,U = 184.0).

As expected after the teaching intervention, scores in the post-
test were higher for both conditions. Participants in the Text condi-
tion scored an average of 11.19 ± 2.75 points, while the ones in the
Graphic condition obtained an average of 10.74 ± 2.23 points. A
Mann-Whitney U test conducted on post-test scores still reported
no statistically significant differences between the two conditions
(p = 0.1681, U = 164.0). We therefore fail to reject H0: we could
not detect differences between the two conditions.

4.3 Results using answers revised with
explanations

Following the approach described in Section 3.2, we required par-
ticipants to write a textual explanation that justifies their selection
(successful execution, compilation error, runtime error) in the MCQ.
We reclassified all the answers, deciding to award a point or not
based on the reasoning detailed in Table 4.

After an examination of the explanations, we excluded a student
who was included in the Text condition but misunderstood the
point of all the questions, probably due to a lack of background

knowledge. In all the answers, the student claimed that the exe-
cution would have never succeeded as “one cannot invoke static
methods like that”. This reduced the size of the Text group from
N = 21 to N = 20. Using the revised scores for all the participants,
we re-analyzed the data at our disposal.

In the pre-test, participants in the Text condition scored an
average of 9.15± 3.10 points. In the Graphic condition, the average
number of points was 7.89± 3.16. A Mann-Whitney U test reported
no statistically significant differences between the two conditions
(p = 0.1344,U = 150.5).

Also in this scenario, as expected, scores in the post-test were
higher for both conditions. Participants in the Text condition scored
an average of 11.15±2.39 points, while the ones in the Graphic con-
dition obtained an average of 9.42 ± 3.11 points. A Mann-Whitney
U test conducted on post-test scores now reported a statistically
significant difference between the two conditions (p = 0.0299,
U = 123.0). We therefore reject H0 in favor of Ha . It appears that
the Text modality is a better way to teach expressions, compared
to the Graphic one.

5 REFLECTIONS ON THE RESULTS
Prior work in other fields already raised concerns about undisclosed
choices in the way researchers collect and analyze data. Those
choices can rather easily flip the outcome of an experiment, to
the point of “allowing presenting anything as significant” [41]. In
Section 4 we took that claim and went one step further. The use of
MCQs in an ad hoc instrument carries the risk of drawing the wrong
conclusion, despite efforts to carefully design the experiment.

We developed our instrument following a common approach
used by other Computer Science Education researchers (Table 2): the
first author created an initial set of MCQs to assess knowledge on
expressions in Java. The choice of the questions was based already
previously known misconceptions, following a recommendation to
develop concept inventories [2]. The instrument was administered
to other three experts, who gave feedback to improve the clarity of
the questions, fix typos and select the most interesting ones that fit
in the allocated time. This seemingly reasonable effort was evidently
not enough to create an instrument suitable for experiments.

In Section 4.3 we brought up the case of the student who was
focused on an entirely unrelated aspect (static methods) and was
missing the point of the questions. That student, in the raw analysis
described in Section 4.2, was improperly getting points for all ques-
tions that still had as a correct option “there is a compilation error”,
but for entirely unrelated reasons. The questions were not actually
measuring the understanding of that student. Eliminating or even
anticipating such issues is hard, as some of them are intrinsically
related to the topics that are being tested.

Similar cases are scattered throughout the answers to the differ-
ent questions. Figure 2 shows how many such cases were found
after analyzing the explanations given in the pre-test (regardless
of the condition in which participants were in, as the tests did not
differ) and categorizing the answers according to Table 3. We note
that there is a difference in prevalence across the 14 questions, with
some noteworthy patterns emerging.
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Figure 2: Distribution of assessment categories per question (pre-test, all groups, N = 44).

The prevalence of answers that would be correctly judged even
without explanations (i.e., those belonging to the categories Cor-
rect and Wrong) greatly varies across questions. They constitute
the totality in Question 6, but they account for just 68% in Ques-
tion 1. The average is at 85%, which means that the remaining 15%
is potentially wrongly judged if one does not consider explana-
tions. Questions towards the end of the test (the order of questions
was not shuffled) tend to exhibit higher rates of missing answers,
possibly due to students’ tiredness or lack of time.

While it can be claimed that these issues can be mitigated by
increasing the number of participants in the experiments, our group
sizes are common in the analyzed literature. We screened all the 31
papers included in the literature survey detailed in Table 2 to note
what was the number of participants in the experimental condition
that had fewer of them. We made an educated guess to deduce N
where it was not explicitly specified (e.g., by looking at the degrees
of freedom of the reported statistics). We found that N ≤ 30 in
the majority of the papers (16 out of 31). This is also in line with
the finding reported in a systematic literature review that included
many computing education venues by Decker et al. [8]: the most
common value for N was in the 20-29 range.

6 LIMITATIONS
In our experiment, triangulating the multiple-choice answers with
explanations flipped the conclusion one would draw from a statis-
tical test. This does not necessarily generalize to all experiments,
and would need to be corroborated. Moreover, only the first au-
thor was involved in the categorization of the explanations. Other
researchers could adopt the same style of analysis in other experi-
ments to see how much this finding applies to different contexts.

Data from the literature survey condensed in Table 2 has been
collected by the first author, who made his best effort to categorize
the kind of instrument used in the main experiment described in
each work.

Limiting the literature survey to papers that contain the terms
“posttest” or “post-test” may have excluded studies that do not use
those very words to denote that idea. We still deem this choice
appropriate as it targets works that contain experiments with some
sort of evaluation after the learning intervention, and it also re-
tains experiments that do not necessarily use a pre-test to measure

knowledge before the experiment or that do not compare results
across multiple conditions. While we believe that the resulting set
constitutes a representative sample of experiments published in
Computer Science Education venues, it should by no means be
treated as an exhaustive review of all experiments published in all
venues.

7 RECOMMENDATIONS FOR EXPERIMENTS
While it is easy to report statistics that prove or disprove the ef-
fectiveness of a certain innovation, it is problematic to trust the
results when they are so susceptible to seemingly reasonable in-
terpretations of the answers given to an instrument. Recruiting a
large number of students with the appropriate prior knowledge can
be challenging due to various external constraints. The issues de-
scribed in this paper tend to affect more smaller-sized groups, such
as those commonly reported in the analyzed papers. Increasing the
groups’ sizes can mitigate problems, such as decreasing the weight
of students who completely misunderstand the meaning of all the
questions, or those who run out of time and rush to complete in a
non-principled way the answers towards the end of a test.

However, since we are well aware that such an increase is of-
ten unfeasible, we recommend two possible ways to address the
problem and mitigate such issues, so that results can be trusted
more. Researchers can evaluate which one suits best their needs,
depending on the specific context of the experiment.

The first one is to use a standardized instrument (e.g., a concept
inventory). Whenever possible, researchers should rely on instru-
ments that have been specifically developed and studied to be as
reliable and valid as possible.

The alternative is to add explanations to MCQs. We described why
sometimes using a concept inventory is unfeasible (e.g., an inven-
tory to assess the specific topics under scrutiny does not exist) and
recruiting more participants is challenging. In those cases, asking
participants to always provide explanations in addition to selecting
the option in MCQs and then judge the correctness of the answers
taking into account those explanations can be an effective way to
get more valid and reliable measures of participants’ knowledge.
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8 CONCLUSION
We introduced a way to categorize answers to MCQs, surveyed the
literature on experiments in Computer Science Education research
to prove the prevalence of MCQs in ad hoc instruments frequently
used in experiments, and showed in a real experiment how ignoring
explanations that justify participants’ answers can lead to drawing
wrong conclusions. We hope that this work can inspire researchers
to take these aspects into account when designing instruments and
conducting experiments in the future, to increase the rigor of the
work published in the field. As an additional practice that we hope
will become more broadly adopted by the community, we share
at https://zenodo.org/record/5118719 the raw (anonymized) data
that allow the replication of the reported statistics [39] about the
experiment.
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