Teaching Introductory Programming
Using Graphics as a Domain

Doctoral Dissertation submitted to the
Faculty of Informatics of the Universita della Svizzera italiana
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Luca Chiodini

under the supervision of

Prof. Matthias Hauswirth

August 2025

Dissertation Committee

Carlo Alberto Furia Universita della Svizzera italiana, Switzerland
Marc Langheinrich Universita della Svizzera italiana, Switzerland

Quintin Cutts University of Glasgow, UK
Mark Guzdial University of Michigan, USA
Johan Jeuring Utrecht University, Netherlands

Dissertation accepted on 25 August 2025

Research Advisor PhD Program Director

Prof. Matthias Hauswirth Prof. Walter Binder / Prof. Stefan Wolf

I certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted previ-
ously, in whole or in part, to qualify for any other academic award; and the content of
the thesis is the result of work which has been carried out since the official commence-
ment date of the approved research program.

Luca Chiodini
Lugano, 25 August 2025

To teachers who go above and beyond

iii

iv

Abstract

An increasingly wider and more diverse population is learning to program, with inter-
ests and motivations that often differ from traditional ones. Instructors try to cater to
these new needs by designing learning experiences that go beyond classic domains and
include, for example, multimedia. Graphics, in particular, has emerged as an attractive
domain. However, this shift is not exempt from criticisms: programming graphics can
be an engaging activity, but it might actually distract from the intended learning goals.

This dissertation aims to show that it is possible to design an approach to teach
programming using graphics as a domain, thereby sustaining the engagement, with-
out neglecting fundamental aspects of programming such as abstraction and problem
decomposition. We start by reviewing existing approaches to graphics used in introduc-
tory programming, highlighting a number of pitfalls. We then present the PyTamaro
approach: a Python library with a design that eschews these pitfalls, an unplugged
introduction to programming based on the library, and a dedicated web platform that
integrates pedagogical features to leverage the strengths of the approach.

The PyTamaro approach is evaluated in a controlled experiment using the popular
turtle graphics as a baseline. Both groups reported high engagement. On transfer to
questions outside the domain of graphics, we found few differences, despite the fact
that the PyTamaro group had practiced on tasks isomorphic to those in the post-test.

We then conducted a case study with five Swiss high school teachers who have
adopted the PyTamaro approach to teach programming. The study analyzed why they
decided to adopt our approach, examined their teaching materials in depth, and col-
lected the experience of using PyTamaro with their students. In summary, teachers
recognized PyTamaro as a novel and engaging approach to graphics, used it to intro-
duce most programming concepts, and emphasized the definition of functions as a
means of abstraction. The case study also highlighted certain issues: teachers had to
create their own materials, explained problem decomposition only in the domain of
graphics, and struggled to reconcile the ideas of (im)mutable variables and constants.

Overall, the PyTamaro approach shows the feasibility of teaching introductory pro-
gramming in an engaging way, emphasizing abstraction and decomposition. Its current
use at three educational levels paves the way for future empirical investigations.

Vi

Acknowledgements

This thesis would simply not exist without Matthias Hauswirth. It was Matthias who,
at the start of a pandemic, offered me the opportunity to become his doctoral student
and successfully persuaded me to accept the offer. It was Matthias who involved me
in a unique program to train high school teachers in Switzerland and who allowed
me to explore the possibility of creating an educational graphics library to support
that program. And it was again Matthias who dedicated so much effort over several
years to turn a small library into a major project that spread across Switzerland. His
relentless dedication to teaching well is outstanding. His honest approach to research
manages to offset my criticisms of academia. Thank you, Matthias, for the guidance,
the availability, the freedom, and the inspiration you gave me each day of these years.

I had the honor of spending a semester in Finland during a research visit, which
enabled me to carry out an essential experiment for this thesis; the participants were
students in a course taught by Kerttu Pollari-Malmi. For the Finnish period I need
to thank Juha Sorva and the entire research group led by Lauri Malmi; in particular,
Otto Seppéla and Arto Hellas for their assistance in the study. Juha’s commitment to
teaching shines through his writing, which also inspired parts of this dissertation. The
table of contents of this thesis is designed to read as an extended abstract of sorts, and
does injustice to Juha’s. Thank you and sorry, Juha.

I acknowledge the financial support of the Swiss National Science Foundation: the
grant 184689 funded part of my research and the entire Finnish experience.

I am grateful to each member of my dissertation committee—professors Carlo Al-
berto Furia, Marc Langheinrich, Quintin Cutts, Mark Guzdial, and Johan Jeuring—
for accepting the invitation even with their busy schedules, and especially for their
thoughtful feedback on an earlier proposal that led to this thesis.

I would not have been able to carry out a relatively large project alone. At differ-
ent points, members of the research group—Andrea Gallidabino, Igor Moreno Santos,
and Joey Bevilacqua—helped each with their competencies and all with a laugh. The
stronger connections to programming language theory are the merit of Igor. Even with
some philosophical disagreements, our collaboration in these years has been nothing
short of remarkable. Many Bachelor’s and Master’s students also contributed to my

Vii

viii

project. The precise attribution is within the dissertation; this serves as a collective
expression of gratitude.

The project described in this dissertation would not make sense without teachers.
I will refrain from making names here, in part because the list would be too long (and
that is simply amazing!) with the risk of forgetting someone, in part because some of
them went the extra mile, agreed to be scrutinized in a case study, and should remain
anonymous to the extent that is possible. Working together with so many teachers who
voluntarily decided to adopt an innovation and bear the extra load that comes with it
has been one of the best experiences during these years. May this appreciation also
extend to some great teachers who shaped me in elementary, middle, and high school.
This thesis also exists because of their passion.

I feel grateful for my parents. They cannot fathom what I have been “studying”
for all these years of my life, but nonetheless allowed me to pursue this long journey
without having to worry about anything other than studying. That is a privilege, and
they deserve praise. Grazie.

My sister and my friends helped me stay balanced and offered joyful distractions
that are essential to endure a demanding journey. The existence of Mikko tempers my
nihilism. Thank you, all.

Contents

II

Prologue

Here Is an Introduction to This Thesis

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

More and more people are learning to program
Programming is often taught using mathematics as a domain
Other domains can be used to teach programming
A domain is not necessarily a context, which some criticize
This thesis claims that graphics can be a suitable domain
This thesis presents six main contributions
This thesis subscribes to pragmatism and uses multiple research methods
Parts of this thesis are based on published work
Several people deserve to be acknowledged for their contributions

Teaching Introductory Programming With Graphics

Teaching Introductory Programming Is Challenging

2.1
2.2
2.3

2.4
2.5
2.6
2.7
2.8

Learning to program is difficult formany
Programming misconceptions abound
Educators have long searched for the next simpler programming lan-
BUAZE '+ . v v e e e e e e e e e
Python is increasingly popular for introductory programming
But Python is not a simple language
A sublanguage focused on expressions is a sensible starting point . . .
Abstraction and decomposition are fundamental in programming . . .
Language models may raise the importance of abstraction and decom-
POSILION . . . v v v e e e e e e e e e e e e e e e e

2.8.1 Models are great at generatingcode

2.8.2 Models ace introductory programming tasks

2.8.3 What remains of programming then?

2.9

We need to engage a diverse population of learners

2.10 Using graphics is a way to engage novices

1

3
3
5
5
6
7
7
9

11
12

13

15
15
16

18
19
20
23
24

26
26
27
27
28
29

X CONTENTS

3 There Are Many Approaches to Using Graphics 31
3.1 The scope is textual programming languages with graphical output. . 31
3.2 We review three approaches using the classical example of a house . . 32
3.3 Graphics can be drawn using global coordinates on a canvas 33
3.4 Graphics can be drawn controllingaturtle 34
3.5 Graphics can be treated as values to compose 35

4 Existing Approaches Have Pitfalls 37
4.1 Decomposing a problem cleanlyishard 37

4.1.1 Global coordinates break independence 39
4.1.2 Turtle state also breaks independence 39
4.1.3 Local coordinates are prone to misuse 40
4.2 Learners’ engagement should be meaningful 41
4.2.1 External graphics may lower motivation 41
4.2.2 Rich APIs shift the emphasis from programming to libraries ... 41
4.2.3 Scalable graphics reduce the need for abstraction 42
4.3 Complexity should be kept under control 43
4.3.1 At the beginning, language features should be minimized 43
4.3.2 Mutability makes it harder to reason about programs 44

III The PyTamaro Approach 45

5 PyTamaro Is a Library Designed to Avoid the Pitfalls 47
5.1 This is an initial example with PyTamaro 47
5.2 The design encourages the definition of abstractions earlyon 48
5.3 Graphics enable visual problem decomposition 49

5.3.1 Visual decomposition starts from basic examples 50
5.3.2 There are multiple ways to (de)compose 51
5.3.3 Aflexible combinator enables (de)composing more elaborate graph-
ICS e 52
5.3.4 Clean decomposition means no unwanted dependencies. 54
5.4 The structure of the graphic informs the structure of the program . . . 55
5.5 Abstraction arises from similarities and differences 56
5.5.1 We can give a name to identical graphics. 56
5.5.2 We can create a function for similar graphics with few differences 57
5.5.3 Functions can then be used to produce animation frames 60
5.6 PyTamaro can be used to create meaningful graphics 61

5.7 PyTamaro programs only require a subset of Python, but are not limited
110 5 L 64

Xi CONTENTS
5.7.1 In a sense, PyTamaro is “functional” programming 64
5.7.2 But compartmentalizing programming into paradigms is misguided 65

5.8 The PyTamaro approach is not confined to an English API in Python . 66
5.8.1 The design can be implemented in other programming languages 66
5.8.2 PyTamaro is localized for natural languages 66

5.9 PyTamaro’s minimalism is only in service of learning 67
5.9.1 Minimal does not mean only one primitive 67
5.9.2 Minimal does not mean only one combinator 68
5.9.3 Minimal does not mean as few characters as possible 68

5.10 The minimalism also brings limitations 69
5.10.1 Working with a bounding box can be limiting 69
5.10.2 A local coordinate system can be reintroduced 70

5.11 The PyTamaro approach goes beyond the design of a library 71

6 With TamaroCards, Programming Can Be Introduced Unplugged 73

6.1 Programming can be initially taught unplugged 73

6.2 Unplugged programming is related to tangible notional machines . . . 74

6.3 TamaroCards is a notional machine for PyTamaro expressions 75
6.3.1 TamaroCards uses physical cards to represent programming con-

] 0 1 O 76
6.3.2 TamaroCards can be seen as a visual programming language . . . 77
6.3.3 The house example can be created with TamaroCards 78
6.3.4 Cards also serve as documentation 79

6.4 Students follow a systematic process from cardstocode 81

6.5 TamaroCards can also help with misconceptions 82

6.6 Teaching abstraction already starts with TamaroCards 83

6.7 We piloted a curriculum in a middle school using TamaroCards 84

7 PyTamaro Web Offers Programming Activities with PyTamaro 89

7.1 The platform was created to show example activities to teachers . . 89

7.2 The computational model is based on notebooks, with key differences 90

7.3 Activities can leverage dedicated features to help learners 92

7.4 A curriculum is a guided path through activities 93

7.5 Privacy and pragmatic reasons dictate the platform architecture 96

7.6 Teachers contribute content using version control 98

7.7 We used the platform for a self-guided Hour of Code curriculum 100

7.8 The platform hosts several activities and curricula 102

8 The Toolbox of Functions Promotes Abstraction 103

Xii CONTENTS
8.1 We should move from code clones to codereuse 103
8.1.1 Code clones are widespread 104
8.1.2 Code clones can be avoided with codereuse 104
8.1.3 Environments do not always favor codereuse 105
8.1.3.1 Environments stimulate the use of code snippets 105
8.1.3.2 Environments can offer more advanced templates for code . . 105
8.1.3.3 Scratch offers to remix projects by duplication 106
8.1.3.4 Multi-file projects can require a complex setup 106
8.1.4 Assignments do not always favor codereuse 107
8.2 The Toolbox of Functions is an approach to promote code reuse 107
8.3 PyTamaro Web implements the Toolbox of Functions 108
8.3.1 A student starts by defining functions normally 108
8.3.2 Functions can be added to the Toolbox 109
8.3.3 Students can then use functions from their Toolbox 111
8.3.4 The Toolbox grows overtime 112
8.3.5 Students gradually learn to manage their Toolbox 112
8.4 We collected initial data on students using the Toolbox in PyTamaro Web 113
8.5 The idea of the Toolbox can be expanded and empirically evaluated . 113
9 Judicious Is a Gradual Documentation System for Novices 115
9.1 We briefly review documentation and introductory programming . . . 117
9.1.1 There are a number of different documentation systems 117
9.1.1.1 JavadocforJava 117
9.1.1.2 Scribble forRacket 117
9.1.1.3 SphinxforPython 118
9.1.1.4 PylanceforPython 118
9.1.2 API documentation for beginners is sometimes ad hoc 119
9.2 Judicious is a novel pedagogical documentation system 119
9.2.1 Judicious includes a diagrammatic representation 120
9.2.2 Judicious documents one name atatime. 121
9.2.3 Judicious presents documentation gradually 122
9.2.4 Judicious distinguishes constants from parameter-less functions . 124
9.2.5 Judicious indicates functions with side effects 127
9.2.6 Judicious automatically documents student-defined functions 127
9.2.7 Judicious includes usage examples 128
9.3 PyTamaro’s documentation can be fully explored with Judicious 129
9.4 This is how Judicious compares to existing documentation systems . . 131
9.4.1 Most pedagogical features are unique to Judicious 131
9.4.2 Other systems offer certain features not in Judicious 132

Xiii CONTENTS

9.5 The effectiveness of Judicious has not been empirically evaluated . . . 133
IV Empirical Investigations 135
10 We Studied Transfer, Engagement, and Code-Related Skills 137

10.1 Evaluations of graphics-based approaches and the challenge of transfer 138
10.2 Compositional graphics approaches should have potential for transfer 139
10.3 We used a specific methodology for the randomized controlled experi-

MENT . . . vttt e e e e e e e 140
10.3.1 The procedure included four phases. 140
10.3.2 We recruited participants from a CS1 course 141
10.3.3 We asked participants a pre-survey 142
10.3.4 We carefully designed a short teaching intervention 142

10.3.4.1 There is an interplay between pedagogy and library 142
10.3.4.2 This is the content of the four mini-lessons 143
10.3.5 Before the post-test, participants had to complete a post-survey . 143
10.3.6 The post-test consisted of nine questions 144
10.3.6.1 Q1 to Q6 were multiple-choice questions on programming . . 145
10.3.6.2 Q7 to Q9 featured programming tasks in the graphics domain 146
10.3.6.3 Q7wasatracingtask Lo 147
10.3.6.4 Q8 was a program writingtask 147
10.3.6.5 Q9 was a program modification task 148
10.3.7 We analyzed the data with different techniques 149
10.4 These are the results of our experiment 150
10.4.1 The pre-survey indicates that most but not all participants were
NOVICES .« v v v it e e e e e e e e e e e e e e 150
10.4.2 There were no differences in transfer to programming concepts . 151
10.4.3 Programming tasks had more diverse results 152
10.4.3.1 There was a large difference on tracing 152

10.4.3.2 Both groups performed well on a simple program writing task 152
10.4.3.3 Both groups also performed well on a simple program modify-

ingtask 153

10.4.4 The post-survey reports engaged students, with some differences 153

10.5 The experimental results need to be discussed 154
10.5.1 Student engagementwashigh 155
10.5.2 Differences between groups were scarce, with one exception . . . 155

10.5.2.1 The PyTamaro group did better on their tracing task 156

10.5.2.2 Other differences were largely absent 156

Xiv CONTENTS

10.5.3 The multiple-choice questions were designed with transfer in mind 157

10.5.3.1 We aimed to stay clear from “Teaching to the Test” 157
10.5.3.2 We studied transfer to isomorphic programs 158
10.5.3.3 Transfer, even to isomorphic tasks, can fail 158
10.6 There are threats to the validity of ourstudy 159
10.6.1 Students’ prior knowledge affects theresults 159
10.6.2 The short study duration limits what can be observed 160
10.6.3 There are threats related to data collection and the instrument . 160
10.6.4 Generalization is limited 160
10.6.5 Students may have some response biases 161
10.6.6 We have an authorship bias as we are PyTamaro’s authors 161

10.7 To conclude, we did not find evidence of better transfer with PyTamaro 161

11 We Conducted a Case Study With High School Teachers 163
11.1 Swiss teachers adopted PyTamaro in different contexts 163
11.2 The pedagogy and the library are interconnected 164
11.3 Prior work investigated when and how educators adopt innovations . 164
11.4 We conducted a case study on how teachers adopt PyTamaro 166

11.4.1 Five teachers represent our fivecases 166
11.4.2 We investigated why teachers adopt PyTamaro and how they trans-

late the approach in their teaching materials 166

11.4.3 We collected two different sources of evidence 167

11.4.3.1 Teaching materials serve as documentation 167
11.4.3.2 Individual interviews are targeted and insightful, but suffer

frombiases 168

11.4.3.3 Our interviews also included a small assessment part 169

11.4.4 Multiple sources of evidence enable triangulation. 169

11.4.5 We followed a protocol for the interviews 170

11.4.5.1 Some questions focused on the teacher 171
11.4.5.2 Other questions investigated the choice of graphics as a domain

and PyTamaro, 171

11.4.5.3 We established a template for questions about teaching materials 172

11.4.5.4 Some questions discussed the students’ experience 173
11.4.6 The study suffers from a clear authorship bias, which we tried to

mitigate e e 173

11.4.7 We analyzed each case, and acrossthecases. 174

11.5 Thecaseof Ada 176

11.5.1 ThisisAda’scontexto v v v ittt i 176

11.5.1.1 She has modest programming experience 176

XV CONTENTS

11.5.1.2 She has two colleagues with extensive experience 176
11.5.1.3 She mainly teaches in the 10th grade 176
11.5.1.4 She gave sensible feedback to two PyTamaro programs 177
11.5.2 On the choice of adopting PyTamaro 178
11.5.2.1 For her, the training program was essential to develop materials 178
11.5.3 On the teaching materials 179
11.5.3.1 Hereisanoverview 179
11.5.3.2 Function definition is introduced with fading examples 179

11.5.3.3 Offline exercises offer practice for the Toolbox of Functions . 182
11.5.3.4 Decomposition was also discussed in older materials with tur-

tlegraphics e 182
11.5.3.5 Both constants and mutable variables are used 183
11.5.3.6 A “Table of Values” is used to explain repetition with loops . . 183
11.5.3.7 She tends to avoid nested expressions 185
11.5.3.8 Some of her materials include method calls 185
11.5.3.9 She does not use TamaroCards 186
11.5.3.10 Her activities on PyTamaro Web end with explicit learning goals 186
11.5.4 On the student experienceo.... 187
11.5.4.1 Student attitude varies more individually than by their major 187
11.5.4.2 Students find listing explicit names to import demanding .. 187
11.5.4.3 Students get creative in the final project with PyTamaro ... 188
11.5.4.4 Students can debug PyTamaro programs without a debugger 188
11.6 ThecaseofBarbara 189
11.6.1 Thisis Barbara’scontext 189
11.6.1.1 She teaches mathematics and is critical about her program-
ming knowledge 189

11.6.1.2 She teaches in the 9th grade to students from different majors 189
11.6.1.3 She mostly focused on style when giving feedback to two Py-

Tamaro programso 190
11.6.2 On the choice of adopting PyTamaro 191
11.6.2.1 The lack of a textbook made her hesitant 191
11.6.3 On the teaching materials 192
11.6.3.1 Hereisanoverview 192
11.6.3.2 TamaroCards are used from the beginning 192
11.6.3.3 Students mostly use the Toolbox on the web platform 193
11.6.3.4 A transition from constant to variables happens when intro-
ducing loops e e 194

11.6.3.5 There are issues with transfer on loops and lists 195

XVi CONTENTS

11.6.3.6 The PyTamaro curriculum focuses on concepts, but turtle re-
quires less syntax i e e 196
11.6.4 On the student experience 197
11.6.4.1 Some students still struggle with syntax, despite TamaroCards 197
11.6.4.2 Projects were affected by language models and a restricted set

ofactivities 199
11.7 Thecaseof Charles 200
11.7.1 Thisis Charles’scontext. 200
11.7.1.1 He is a biology teacher with some programming experience . 200
11.7.1.2 He uses PyTamarointhe 9thgrade. 201
11.7.1.3 He gave good feedback on two PyTamaro programs 201
11.7.2 On the choice of adopting PyTamaro 202
11.7.2.1 The graphic domain is engaging for many students 202
11.7.3 On the teaching materials 203
11.7.3.1 Hereisanoverview, 203
11.7.3.2 He uses TamaroCards and explains how to turn programs into
Python 203
11.7.3.3 He uses a memory diagram to explain variables 205
11.7.3.4 He explains two different ways to repeat 206
11.7.3.5 He does not use the web platform but still adopts the Toolbox
approach e 208
11.7.3.6 He uses and praises the Judicious documentation system . . . 209
11.7.3.7 PyTamaro materials emphasize functions but ignore interactivity 209
11.7.3.8 Complex features are shown to students at the beginning .. 210
11.7.4 On the student experience 211
11.7.4.1 Students feel unconstrained in PyTamaro-based projects . . . 211
11.7.4.2 Game programming in the 10th grade without PyTamaro re-
quires complexcode e 211
11.7.4.3 Students do not always see why one should define functions . 213
11.7.4.4 Type annotations are perceived as comments 214
11.8 Thecaseof Dorothy uen.... 215
11.8.1 Thisis Dorothy’scontext 215

11.8.1.1 She recently learned programming in the retraining program 215

11.8.1.2 She uses PyTamaro in the 9th grade with uninterested students215
11.8.1.3 With help, she managed to give feedback to two PyTamaro

PrOZTAIMS v v vttt ettt e e e e e e e 216

11.8.2 On the choice of adopting PyTamaro 217

11.8.2.1 She saw the value of PyTamaro during the training program . 217

11.8.3 On the teaching materials 218

XVii CONTENTS
11.8.3.1 Hereisanoverview 218
11.8.3.2 Programming concepts are introduced using multiple domains 218
11.8.3.3 Some function definitions are more subprograms than abstrac-
tions of expressions 219

11.8.3.4 She uses the Toolbox approach on the web platform, but not
offline 220
11.8.3.5 She uses TamaroCards to introduce PyTamaro functions . .. 221
11.8.3.6 She uses type annotations extensively 222
11.8.3.7 Variables are sometimes mutable and sometimes immutable . 223
11.8.3.8 Her activities favor shallowly nested expressions 224

11.8.3.9 She motivates some forms of abstractions with similarities and
differences e 224

11.8.3.10 Her materials introduce function definition earlier than her
colleagues’ 225
11.8.3.11 Errors are discussed earlyon 225
11.8.4 On the student experience 226
11.8.4.1 Students use functions easily but need help to define them . . 226
11.8.4.2 Students get creative in projects and work around the limitations 227
119 Thecaseof Emil 228
11.9.1 Thisis Emil'sbackground 228

11.9.1.1 Heis an experienced biology teacher who recently learned pro-
GraMIMINE . . v v v v vt e e e e e e e e e e e e e e e e 228
11.9.1.2 He teaches with PyTamaro to students in the 9th grade 228
11.9.1.3 He gave quick and good feedback on two PyTamaro programs 229
11.9.2 On the choice of adopting PyTamaro 229
11.9.2.1 PyTamaro enables him to go beyond turtle graphics 229
11.9.3 On the teaching materials 231
11.9.3.1 Hereisanoverview 231
11.9.3.2 A number of unplugged activities use TamaroCards 231
11.9.3.3 Function definition comes early in the curriculum 233
11.9.3.4 Decomposition is only discussed using the graphics domain . 233
11.9.3.5 There is no project due to limited classroom time 234
11.9.3.6 All examples use the German API of PyTamaro 234
11.9.3.7 Errors are presented at the very beginning 235
11.9.4 On the student experience 236
11.9.4.1 Students exhibit creativity with PyTamaro 236
11.9.4.2 Students embraced the Toolbox approach 236
11.9.4.3 Students can generally deal with nested expression 237

11.9.4.4 The neutral element for graphics is a challenge 238

xviii CONTENTS

11.9.4.5 Faster students can explore activities on the web platform . . 238
11.10 We synthesized findings acrosscases 238
11.10.1 On the choice of adopting PyTamaro 239
11.10.1.1 Graphics is seen as a motivating domain, and PyTamaro as a
novel approach to graphics. 239
11.10.1.2 Dedicated time during training was essential to develop new
teaching materials, 240
11.10.2 On the teaching materials 241
11.10.2.1 Teachers use graphics to introduce most programming concepts 241
11.10.2.2 Defining functions is emphasized earlyon 242
11.10.2.3 The Toolbox approach is widely adopted 242

11.10.2.4 Decomposition is mostly discussed in the domain of graphics 243
11.10.2.5 Teachers struggle to reconcile the ideas of (im)mutable vari-

ablesand constants 244
11.10.3 On the student experienceo 246
11.10.3.1 Students are challenged by defining functions, but not over-
whelmed 246
11.10.3.2 Students do not deem PyTamaro too restrictive for their cre-
ALIVILY © . v e 247
V Epilogue 249
12 Here Is a Conclusive Look at This Thesis 251
12.1 The PyTamaro approach has potential, but there are challenges 251
12.2 Our empirical investigations have important limitations 252
12.3 Thanks to its flexibility, the approach is used in different contexts . . . 253
13 What Is the Future of PyTamaro? 255
13.1 More empirical studies can be conducted 255
13.2 The PyTamaro approach should still grow 256
13.2.1 Learners should eventually write interactive programs 256
13.2.2 PyTamaro should offer more support for testing. 257
13.2.3 A graphical REPL would emphasize expressions 257

13.2.4 Learners will transition beyond introductory programming in Python 258

VI Appendices 259

A Appendix to the Randomized Controlled Experiment 261

Xix

CONTENTS

A.1 Pre-Survey
A.2 Teaching Intervention
Mini-Lesson 1 (of 4)
Mini-Lesson 2 (of 4)
Mini-Lesson 3 (of 4)
Mini-Lesson 4 (of 4)
A.3 Post-Survey

A2.1
A2.2
A2.3
A2.4

A4.1
A.4.2
A.4.3
A.4.4
A.4.5
A4.6

B Appendix to the Case Study
B.1 Additional dedicated questions for Ada
B.2 Additional dedicated questions for Barbara
B.3 Additional dedicated questions for Charles
B.4 Additional dedicated questions for Dorothy
B.5 Additional dedicated questions for Emil

References

Question 1
Question 2
Question 3
Question 4
Question 5
Question 6

A.4 Post-Test Multiple-Choice Questions

XX

CONTENTS

Part |

Prologue

Chapter 1

Here Is an Introduction to This Thesis

This first chapter introduces the context of this dissertation, formulates the thesis state-
ment, and describes the structure of this document.

1.1 More and more people are learning to program

Recent years have witnessed a surge in the number of people who are learning to pro-
gram, including historically underrepresented populations [159]. The typical student
of a programming course used to be primarily someone enrolled in a computer sci-
ence degree program, but this is rapidly changing. A course that includes some form
of programming is nowadays part of almost every university-level degree, and increas-
ingly also of high school curricula. As a locally relevant example, in 2018 the Swiss
Federal Council accepted a new regulation by the Conference of Cantonal Ministers
of Education that introduces informatics as a required subject in all high schools' in
Switzerland, starting from the 2022/2023 school year [251].

An immediate consequence of this trend of increasing student numbers is that more
learners require more teaching resources. For example, this may materialize in the
need for training and hiring more computer science teachers, or in the need of univer-
sities to scale up the number of teaching assistants or parallel sections (i.e., additional
offerings of the same course) to accommodate larger classes.

Although these practical issues cannot be discounted, the phenomenon also has
deeper implications that deserve further investigation. There are qualitative differ-
ences between the traditional population of a programming course and the new one.
First, there is a difference in terms of interest: many programming courses are now

I This dissertation primarily uses the terms “high school” and “informatics”, but some readers may
find respectively the terms “upper-secondary education” and “computer science” more standard. Within
this work, the terms are interchangeable.

4 1.1 More and more people are learning to program

aimed at people who have not chosen to study the subject but have been “forced to”.
Their motivation to study computer science, especially programming, often starts at
a particularly low level, a factor known for being detrimental to learning [210]. Sec-
ond, the new population might call for different learning objectives, i.e., what a learner
who has profitably attended the course should know. The vast majority of this new
audience will not pursue a career in computer science: is there nonetheless something
worth learning for them? The question leads to extensive discussions on the essence
of computer science that goes beyond vocational needs and is still important for ev-
ery person. The ACM Computer Science Curricula [156] and Wing’s seminal paper on
“computational thinking” [281] offer complementary perspectives on the matter.

Guzdial notes that computing, of which programming is a key component, has not
been introduced in schools for the reason of training future programmers. After all, that
is only one of the possible careers: “the vocational argument is a weak reason to teach
everyone computing—not everyone needs to be a professional programmer” [106].

Turing Laureate Peter Naur offered a profound argument for teaching informatics
to the broad population, as quoted in a passage by Caspersen [40]:

Once informatics has become well established in general education, the
mystery surrounding computers in many people’s perceptions will van-
ish. This must be regarded as perhaps the most important reason for
promoting the understanding of informatics. This is a necessary condi-
tion for humankind’s supremacy over computers and for ensuring that
their use do not become a matter for a small group of experts, but be-
come a usual democratic matter, and thus through the democratic system
will lie where it should, with all of us.

This dissertation reflects this view, placing a special emphasis on programming as one
of the central intellectual activities within the field of computing. Carrying out the
activity of programming in the first person helps to reduce the aura of mystery (the
“magic-ness”) that surrounds computers, demystifying them.

This goal becomes even more important as computers acquire increasingly more
sophisticated capabilities, as proven by the recent advances in “artificial intelligence”
technologies. Companies whose existential purpose is to sell these technologies to
customers actively try to muddy the waters with evocative terminology for the masses.
A healthy relationship with these systems should instead be one in which the citizen
is in a dominating—and not subjugated—position. And given that students are the
citizens of tomorrow, teaching programming is essential for democracy.

5 1.2 Programming is often taught using mathematics as a domain

1.2 Programming is often taught using mathematics as a
domain

How is programming taught to novices? When someone who knows at least a little
bit of programming is asked about their first program, the answer is almost always the
same: “My first program printed ‘Hello, World!” on a screen”. The unanimous response
shows how influential the programming language C and its prime textbook have been:
the “Hello, World!” program is featured on the first chapter of The C programming
language textbook [222]. At the same time, the undefeated popularity of the exam-
ple almost half a century later is a sign that, once ingrained, teaching practices are
remarkably hard to change.

Historically, the programs used in introductory courses are drawn from the domain
of mathematics. On the one hand, this traces back to the origin of computing and
computers [269]. On the other hand, elementary mathematics is included in every
school curriculum and, as a consequence, it is part of the background of all students.
These two factors arguably led to programming being taught using mathematics as a
privileged domain.

As a common example, one can think about the explanation of a sorting algorithm:
students are familiar with integer numbers, which seem to work well as an unobtrusive
environment in which to apply the algorithm. As a slightly more advanced reference,
one can look at the first chapter of the influential textbook Structure and Interpretation
of Computer Programs [3]. The first two sections are already permeated with examples
taken from the domain of mathematics. The textbook features, among others, Newton’s
method to find the square roots, the factorial and Fibonacci functions, an algorithm for
fast exponentiation, Euclid’s algorithm to compute the greatest common divisor, and
primality tests.

1.3 Other domains can be used to teach programming

When beginners are not proficient with relatively sophisticated mathematical concepts,
programming exercises in the domain of mathematics are mostly confined to basic
arithmetic operations. These rather uninteresting exercises are still in widespread use,
despite having been criticized by some as “tedious and dull” [105].

Papert and Solomon already pointed this out back in 1971: “Why should computers
in schools be confined to computing the sum of the squares of the first twenty odd
numbers?” [196]. As a remedy, they proposed that students could use the computer “to
produce some actions”. They built a robot with the semblance of a turtle and designed
a language to give commands to it, such as “move forward” or “turn left”. The same

6 1.4 A domain is not necessarily a context, which some criticize

idea was then replicated virtually on a screen, enabling students to program without
the need for a physical robot. The on-screen turtle conceptually carries a pen and leaves
a trace of its movements, effectively producing a drawing.

Since then, the idea of giving commands to a “turtle” to draw graphics has be-
come popular in introductory programming. Nowadays, a “turtle graphics” library is
available for almost every programming language (e.g., Python’s turtle [216]). Ac-
knowledging the attractiveness and the motivational benefits of graphics and other
media, educators started to leverage these domains as interesting areas for teaching
programming.

Beyond turtle graphics, many other approaches have been used to teach program-
ming using graphics. For example, Guzdial designed a course for students graduating
in majors other than computer science that uses images and sounds [105]. Schanzer
et al. developed Bootstrap, a curriculum for schools in which students learn program-
ming also by writing programs that produce graphics, which are then used to create a
game [231].

1.4 A domain is not necessarily a context, which some
criticize

The previous sections use the term domain to describe the application area in which the
programming tasks are situated. The term context is also widely used in the education
literature. Sometimes, authors seem to use context as a loose synonym for domain.
One could then speak of a “contextualized approach to programming using graphics”.
Other times, context is used with a richer meaning, drawing from contextualism in
philosophy and instructional design [94]. A course could be said to use, say, graphics
as a context when programming examples use graphics consistently and coherently,
problems from the application area of graphics are used to motivate the introduction of
new concepts, students’ projects are based on graphics, students meet external experts
from the domain, and more [62].

Contextualized approaches are praised for being more engaging and helping with
retention, but they are also sometimes criticized for providing a narrow view of com-
puter science, confined to one application area, and adding distractions that reduce
the time spent on the actual content [107]. Conversely, decontextualized approaches
have been lauded for their generality and flexibility [169].

Guzdial tried to clarify the meaning of a decontextualized approach: “[...] one
where we (are) teaching computer science in a way that can be easily applied to any
application area. When we teach students to swap two variables, or to implement a
binary search, or to sort an array, we are teaching decontextualized knowledge about

7 1.5 This thesis claims that graphics can be a suitable domain

computer science” [107]. It is important, however, not to conflate simply using exam-
ples situated in a domain with adopting a full-fledged contextualized approach. Even
some of the approaches described as decontextualized are still embedded in a domain,
albeit minimally. A classical example from a course on algorithms could be sorting an
array of numbers: if “decontextualized” is used to mean “detached from any domain”,
then this programming task would still not qualify as such, as it requires an understand-
ing of numbers (including their representation, which can in turn affect the complexity
in time and space) and of ways to compare them. As DeClue aptly points out: “learning
always takes place in a context, whether that context is named and studied [...] or the
context is ignored” [70].

The benefits of a decontextualized or, better, domain-less approach rest on the
assumption that learners can acquire knowledge independently from any domain and
then transfer it whenever needed to the domain at hand [107]. However, teaching from
the beginning without any concrete domain is extremely challenging, as it immediately
demands abstract reasoning. Indeed, pedagogies typically interleave content with dif-
ferent degrees of context, using a range of examples that vary from very concrete and
embedded in a domain to very abstract and domain-less [177].

1.5 This thesis claims that graphics can be a suitable do-
main

Viewed under this lens, many existing pedagogies are already using a domain to teach
introductory programming: mathematics. This thesis claims that:

It is feasible to teach introductory programming using graphics as a domain,
in an engaging way, emphasizing abstraction and problem decomposition.

Abstraction and problem decomposition are two of the central “skills”, “facets”, or
“components” that many use to characterize “computational thinking” [238]. As we
shall see in the next chapter, they are essential for programming but often neglected
in introductory approaches.

1.6 This thesis presents six main contributions

This dissertation is organized into parts and presents six main contributions towards
the thesis claimed above. Table 1.1 schematizes the contributions as six high-level
questions and answers. Refined research questions will be presented throughout the
relevant chapters of the dissertation.

8 1.6 This thesis presents six main contributions

Question

Answer

What pitfalls are there in existing ap-
proaches?

Three groups of pitfalls (Chapter 4).

How can a graphics library be designed
to avoid the pitfalls?

Design of the PyTamaro library and
teaching approach (Chapter 5).

How can one teach the approach initially
without computers?

Unplugged activities with TamaroCards
(Chapter 6).

How can pedagogical software tools be
designed to further support the ap-
proach?

Design of the web platform (Chap-
ter 7), including the Toolbox (Chapter 8)
and the Judicious documentation (Chap-
ter 9).

How do learning and engagement com-
pare between the new approach and an
established one?

Randomized controlled

(Chapter 10).

experiment

How are teachers using the new ap-
proach in practice?

Multiple-case study (Chapter 11).

Table 1.1. Mapping high-level questions to their answers in dissertation chapters.

In Part II, we focus on the state of the art. Chapter 2 discusses some problems with
how programming is taught, highlights the importance of abstraction and decomposi-
tion, and reviews the literature on why graphics has potential as an engaging domain.
Chapter 3 reviews the different existing approaches to using graphics as a domain for
teaching programming. Chapter 4 presents the first main contribution: it critically
analyzes existing approaches in light of the above goal, revealing multiple pitfalls.

In Part III, we present the PyTamaro approach with three main contributions:

* Chapter 5 presents the design of a Python library, implementing an approach
that eschews the pitfalls.

* Chapter 6 illustrates TamaroCards, a tangible notional machine to introduce pro-
gramming with PyTamaro through unplugged activities.

* Chapters 7 to 9 present a web platform to showcase and work on PyTamaro-
based programming activities, with dedicated features that leverage the strengths

9 1.7 This thesis subscribes to pragmatism and uses multiple research methods

of the minimalist library to promote abstraction and provide a gradual documen-
tation system.

Part IV presents two empirical investigations of the PyTamaro approach:

* Chapter 10 reports on a randomized controlled experiment that evaluates the
proposed design, using the popular turtle graphics approach as a baseline.

* Chapter 11 describes a multiple-case study with five Swiss high school teachers
to analyze why they decided to adopt our approach, how they integrated it into
their teaching materials, and their experience with students after using it.

Part V wraps up this dissertation: Chapters 12 and 13 respectively conclude this dis-
sertation and outline directions for future work. Part VI is just for the appendices.

Although this dissertation reports on an approach to teaching introductory pro-
gramming, it is not intended as a programming tutorial and assumes prior familiarity
with programming.

1.7 This thesis subscribes to pragmatism and uses multiple
research methods

Quantitative and qualitative research paradigms are often portrayed as mutually exclu-
sive, and purists from both sides declare the other side as conducting invalid research.

Coming from a positivist philosophy of science, “Quantitative purists believe that
social observations should be treated as entities in much the same way that physical
scientists treat physical phenomena. Further, they contend that the observer is separate
from the entities that are subject to observation. Quantitative purists maintain that
social science inquiry should be objective. [...] According to this school of thought,
educational researchers should eliminate their biases, remain emotionally detached
and uninvolved with the objects of study, and test or empirically justify their stated
hypotheses.” [136]

Qualitative purists reject positivism and “argue for the superiority of construc-
tivism, idealism, relativism, humanism, hermeneutics, and, sometimes, postmodernism.
These purists contend [...] that it is impossible to differentiate fully causes and effects,
that logic flows from specific to general (e.g., explanations are generated inductively
from the data), and that knower and known cannot be separated because the subjective
knower is the only source of reality” (ibid.).

The debate is heated to the point that some argue for declaring a complete incom-
patibility between the two views. This “incompatibility thesis” stems from the belief

10 1.7 This thesis subscribes to pragmatism and uses multiple research methods

that the underlying epistemological paradigms are incompatible, and therefore the re-
search methods are incompatible [127].

This tension is present not only in science broadly, but also within computing edu-
cation research in particular. Brown and Guzdial [33] recently discussed the apparent
dichotomy in programming education research between the quantitative analysis of
large datasets (“big data”) and the in-depth qualitative analysis of a small number of
participants in a study (“rich data”). The two different types of data analysis, each with
passionate supporters and vocal detractors, are sometimes viewed as incompatible, but
they offer valuable complementary perspectives on phenomena in programming edu-
cation.

Howe [127] and Johnson and Onwuegbuzie [136] argue in favor of pragmatism [204]
as a philosophy of science. Pragmatism views knowledge “as being both constructed
and based on the reality of the world we experience and live in”, “endorses fallibilism”
in that “current beliefs and research conclusions are rarely, if ever, viewed as perfect,
certain, or absolute” and regards theories as true “based on how well they currently
work” [136].

Pragmatism supports using multiple research methods. This is often referred to
as “mixed methods research”. Mixed methods research could be viewed as a third,
alternative paradigm in educational research, moving beyond quantitative and quali-
tative research and recognizing both of them as useful to answer research questions.
In practice, things are not so categorical: “if you visualize a continuum with qualitative
research anchored at one pole and quantitative research anchored at the other, mixed
methods research covers the large set of points in the middle area” [136].

The research approach used in this dissertation subscribes to pragmatism as a phi-
losophy of science and embraces multiple research methods. Appropriate justifications
for the use of each method are provided when discussing how each part of the data
collected in empirical studies is analyzed.

In addition to empirical studies, this dissertation critically examines prior work
in programming education and introduces new pedagogical software tools. For these
parts, our arguments are grounded in prior research in computing education (e.g., on
the struggles faced by novices in learning to program) and in programming languages
theory (e.g., on claims of how certain language features are more complex than others).

Dewey [73], a prominent pragmatist, suggested substituting “truth” with the ex-
pression “warranted assertibility”. The notion of a “warrant” comes from “the legal
sphere, where a warrant is an authorization to take some action, e.g., to conduct a
search; to obtain a warrant the investigator has to convince a judge that there is suffi-
cient evidence to make the search reasonable” [207].

Echoing Sorva, for this thesis “I am satisfied to say that our results lead to warranted
beliefs rather than truths” [244]. The scientific community is the ultimate judge of the

11 1.8 Parts of this thesis are based on published work

legitimacy of this research, and will eventually complement or replace it with new
theories and findings.

1.8 Parts of this thesis are based on published work

Some chapters of this dissertation are based on peer-reviewed, published work. Specif-
ically:

e Chapters 3 to 5 are a revised and significantly expanded version of: Luca Chio-
dini et al. “Teaching Programming with Graphics: Pitfalls and a Solution”. In:
Proceedings of the 2023 ACM SIGPLAN International Symposium on SPLASH-E.
SPLASH-E 2023. New York, NY, USA: ACM, Oct. 2023, pp. 1-12. ISBN: 979-8-
4007-0390-4. DOIL: 10.1145/3622780.3623644 [55].

* Chapter 8 has been published as: Luca Chiodini et al. “The Toolbox of Functions:
Teaching Code Reuse in Schools”. In: Proceedings of the 6th European Conference
on Software Engineering Education. ECSEE "25. New York, NY, USA: Association
for Computing Machinery, June 2025, pp. 185-189. ISBN: 979-8-4007-1282-1.
DOLI: 10.1145/3723010.3723029 [49].

* Chapter 9 borrows from and extends: Luca Chiodini et al. ‘Judicious: API Doc-
umentation for Novices”. In: Proceedings of the 2024 ACM SIGPLAN Interna-
tional Symposium on SPLASH-E. SPLASH-E 2024. New York, NY, USA: Associa-
tion for Computing Machinery, 2024, pp. 1-9. ISBN: 979-8-4007-1216-6. DOI:
10.1145/3689493. 3689987 [54].

e Chapter 10 presents a study that first appeared in: Luca Chiodini et al. “Two
Approaches for Programming Education in the Domain of Graphics: An Experi-
ment”. In: The Art, Science, and Engineering of Programming 10.1 (Feb. 2025),
14:1-14:48. ISSN: 2473-7321. DOI: 10 .22152/programming- journal .
org/2025/10/14 [56].

Additionally, during the doctoral program, the author of this dissertation has authored
other publications in the area of teaching introductory programming. On misconcep-
tions, he has worked on an inventory of programming language misconceptions [52],
a self-check tool for teachers on these misconceptions [51], and a study of miscon-
ceptions among high school teachers [48]. On expressions, he investigated their role
while learning Java [53] and the use of a notional machine to assess the understand-
ing of expressions [26]. Finally, he has worked on methodological issues with ad hoc
instruments in experiments to assess programming competence [50].

https://doi.org/10.1145/3622780.3623644
https://doi.org/10.1145/3723010.3723029
https://doi.org/10.1145/3689493.3689987
https://doi.org/10.22152/programming-journal.org/2025/10/14
https://doi.org/10.22152/programming-journal.org/2025/10/14

12 1.9 Several people deserve to be acknowledged for their contributions

1.9 Several people deserve to be acknowledged for their
contributions

In addition to the original text written for this dissertation, all the publications that form
the base of this document have been led by the author of this dissertation. Nonetheless,
due acknowledgment should be given to the valuable work of each publication’s co-
authors, who also contributed to the writing: Matthias Hauswirth, Juha Sorva, Arto
Hellas, Otto Seppdld, and Joey Bevilacqua.

The initial version of TamaroCards (Chapter 6) was created by Matthias Hauswirth
and Igor Moreno Santos. The middle school curriculum using TamaroCards described
in Section 6.7 is a collaboration with Rahel Ehinger, who enthusiastically taught it
together with Davide Frova.

The Hour of Code curriculum, hosted on the PyTamaro Web platform and described
in Section 7.7, was authored by a team of students: Agnese Zamboni, Davide Frova,
Jamila Oubenali, and Giorgia Lillo.

This dissertation also describes a number of pedagogical software tools. The author
of the thesis has led the work and developed all the main parts, but several contributions
deserve explicit acknowledgment:

* The PyTamaro library (Chapter 5) benefits from improvements by Matthias Hauswirth,
Davide Frova, Fabio Marchesi, Peiyu Liu, and Joey Bevilacqua. The French lo-
calization is due to the work of Arnaud Fauconnet and Romain Edelman.

* The PyTamaro Web platform (Chapter 7) has also been improved by Matthias
Hauswirth, Joey Bevilacqua, and Davide Frova. Alen Sugimoto worked on the
initial implementation of curricula. Raffaele Perri prototyped a feature to show
the estimated duration of an activity, Giovanni Elisei prototyped an automatic
system to generate multilingual cards, and Anuj Kumar prototyped code com-
prehension questions. Alessandra Sasanelli and Amedeo Zappulla explored how
to analyze the code collected on the web platform. Nathan Coquerel developed a
live environment for TamaroCards. Igor Moreno Santos provided valuable feed-
back throughout.

* An early prototype of the Judicious documentation system (Chapter 9) was de-
veloped by Simone Piatti.

Part 11

Teaching Introductory Programming
With Graphics

13

Chapter 2

Teaching Introductory Programming Is
Challenging

This chapter describes some of the key challenges faced by teachers of introductory
programming courses, motivates the need for simplicity in the choice of programming
language, and justifies the focus on abstraction and decomposition. The last two sec-
tions introduce graphics as a domain that can address one of the challenges: how to
engage learners.

2.1 Learning to program is difficult for many

Programming involves constructing programs using a formal language, known as a
programming language.

The knowledge required for programming can be divided into three levels, usually
referred to as syntactic, conceptual, and strategic knowledge [19]. At the lower level,
syntactic knowledge refers to the syntax of a specific programming language. Java,
for example, requires a semicolon to terminate each statement. Conceptual knowl-
edge refers to a model of the computer, to understand which actions are possible and
happen after specific commands. For example, an assignment statement evaluates the
expression on the right-hand side of the assignment and stores the resulting value at a
memory location. Strategic knowledge involves techniques that leverage syntactic and
conceptual knowledge to solve problems. For instance, it is necessary to devise a plan
to compose simple actions to solve a problem such as computing the average of a set
of grades. In some sense, this kind of knowledge is the specialization to programming
of general problem-solving skills [180].

When considering the activity of programming, one usually thinks about the high-
est of these three levels: strategic knowledge. However, writing a correct program

15

16 2.2 Programming misconceptions abound

that can be executed requires mastering all three kinds of knowledge, which are inter-
related [19]. Acquiring this knowledge to use it fruitfully is challenging for many.

Guzdial [109] provides an account of how expectations to teach students how to
program consistently fall short. A famous problem used in many experiments is the so-
called “rainfall problem”, proposed in 1983 by Soloway et al. [242]. It is a relatively
simple programming task that asks to repeatedly read in numbers representing rainfall
measures from the user until a sentinel value terminates the sequence, and then com-
pute and print the average rainfall (excluding that final sentinel value). In the study,
conducted with students at an elite university, the fraction of correct solutions in the
various experimental groups was as low as 14 %.

Since then, the study has been repeated in multiple universities, in multiple coun-
tries, and with different programming languages. Results were similarly disappoint-
ing [179] and became emblematic of how students worldwide are failing to learn pro-
gramming in any decent way. More recently, some studies painted a less dramatic
picture. The emphasis on problem decomposition typical of the “functional program-
ming” paradigm appears to lead more students to successfully complete the task [91].
The different variants of how the problem has been formulated, the focus on corner
cases, and the differences in what has actually been taught in the introductory courses,
may also have contributed to an overemphasis of the extremely poor results on this
specific problem [235].

However, other pieces of evidence rule out the hypothesis that difficulties in pro-
gramming are a mere hallucination of some researchers. The “attrition rate”, i.e., the
percentage of students who enroll in an introductory programming course and fail, is
depressingly high. Beaubouef and Mason [20] anecdotally report attrition rates among
first-year computer science students as high as 30-40 % at many universities. Benned-
sen and Caspersen [25] surveyed instructors at various institutions, finding large dif-
ferences among courses, with a mean of 33 % of students not succeeding. A systematic
review of the literature conducted by Watson and Li [271] confirmed this number: the
analysis of 161 introductory programming courses from 51 institutions in 15 different
countries revealed a pass rate of 67.7 %.

2.2 Programming misconceptions abound

Several threads of research have identified misconceptions held by novice program-
mers. Documenting which incorrect conceptions beginners hold can help programming
teachers better support their students, ultimately lowering the failure rates reported
above.

The knowledge of a teacher can be divided into content knowledge (knowledge

17 2.2 Programming misconceptions abound

about the subject taught) and pedagogical knowledge (general knowledge about how
to teach) [237]. Misconceptions are one part of a teacher’s “pedagogical content knowl-
edge”. This category of knowledge includes “ways of representing and formulating the
subject that make it comprehensible to others [...]” and “an understanding of what
makes the learning of specific topics easy or difficult” (ibid.), such as knowing which
pre-conceptions—often misconceptions—students bring with them. An awareness of
the misconceptions can help teachers recognize the need and develop instructional
strategies to explicitly confront them, with the ultimate goal of overcoming them.

Back in 1986, Du Boulay [77] summarized a number of misconceptions leading
to errors that students face frequently. Issues included lacking a model of the exe-
cution environment (i.e., the “computer” or the “machine”) that one is programming
for, poor analogies that soon become incoherent, error messages that are impossible
to understand at the beginner’s level, and misunderstanding of how specific constructs
of certain programming languages (such as an assignment statement) work.

In the same year, Pea [201] proposed a single root cause that would explain many
bugs encountered by the students. He termed it “superbug”: “the idea that there is a
hidden mind somewhere in the programming language that has intelligent, interpre-
tative powers”. Despite instructors pointing this out at the beginning of their courses
that computers require well-specified instructions to perform any task, in their pro-
gramming, students behave “as if the programming language is more than mechanis-
tic” [77].

Sorva [244, Appendix A] collected more than a hundred misconceptions from over
a dozen specific studies. As Sorva himself admits, the catalog lumps together miscon-
ceptions at different levels of abstraction. The original researchers of the studies also
used terms such as difficulties, mistakes, bugs, misunderstandings.

In 2017, Qian and Lehman [217] conducted a literature review on the topic of pro-
gramming misconceptions in introductory programming. They proposed a definition
of misconceptions as “errors in conceptual understanding”, and structured their anal-
ysis of the difficulties dividing them according to whether they pertain to syntactic,
conceptual, or strategic knowledge.

More recently, Chiodini et al. [52] proposed a narrow definition for a subset of
programming misconceptions, which they termed “programming language misconcep-
tions” and defined as “statements that can be disproved by reasoning entirely based on
the syntax and/or semantics of a programming language”. They published an online
inventory of misconceptions that are divided by programming language to acknowl-
edge that some claims that are wrong in one language may be correct in another. The
inventory contains hundreds of misconceptions observed in students, linking to many
of the new studies that continue to provide corroborating evidence: misconceptions
abound in beginner programmers.

18 2.3 Educators have long searched for the next simpler programming language

2.3 Educators have long searched for the next simpler pro-
gramming language

Given that programs need to be expressed using a programming language, program-
ming teachers have been placing great expectations on the advent of new languages.
The right programming language could perhaps avoid an entire class of problems and
make it easier for beginners to learn how to program without all the difficulties de-
scribed in the previous two sections.

In part, this desire has been met by programming languages and programming
techniques that operate at increasingly higher levels of abstraction.

It is not the intention of this short section to provide a comprehensive account of
the history of programming languages, a topic well worth a book of its own [276].
Instead, we will briefly review the evolution of languages that have been adopted for
introductory programming.

Historically, programming was done at a level close to the hardware, with a family
of languages normally grouped under the generic term “assembly language”. Instruc-
tions in these languages closely correspond to instructions the underlying machine can
execute. Programmers need to understand the architecture of the machine they are
programming for: as an example, one needs to be aware of the size of the machine’s
memory registers.

In the 1950s, a team led by Backus introduced Fortran [14], a language that en-
abled programmers to abstract away from the machine language and write code using
mathematical formulas and control structures like loops and conditional statements.
The language was compiled by a “translator” (which would now be called a compiler)
that was able to generate optimized assembly code. Until the 1970s, Fortran was popu-
lar as a language for introductory programming. As late as 1971, Ralston [218] noted
that “Fortran is a quite adequate vehicle for the student to use in writing programs”
and can serve as the language for the first course in programming.

A significant shift occurred in the late 1960s and the 1970s, with calls from influ-
ential computer scientists to transition to “structured programming” [67]. This style of
programming emphasizes disciplined use of higher-level control structures such as se-
lection and repetition, code blocks, and modular functions, prohibiting arbitrary jumps
to specific sections of the program code [74].

ALGOL [13], a language first introduced in 1960 and with several evolutions (e.g.,
ALGOL 68), embodied the principles of structured programming and has also been
used for educational purposes [193]. Pascal [132] and PL/I [124] have also been
widely used to teach novice programmers.

The C programming language [141] gained popularity in the 1980s. C was devel-

19 2.4 Python is increasingly popular for introductory programming

oped to implement parts of the Unix operating system. It offers control structures to
achieve structured programming, while still allowing programmers to manage memory
manually. A survey among universities in the USA in 1995 showed that, with the ex-
ception of Pascal, C was the most common language for the introductory programming
course [163].

The trend of object-oriented programming led to the creation and adoption of
C++ and Java, two programming languages that dominated introductory programming
courses since the late 1990s [126] until recently.

A separate thread of high-level programming languages developed starting from
Lisp [178], a language that emphasized functions and was influenced by Church’s
lambda calculus [57]. Scheme, one of Lisp’s dialects, has been used as an introductory
programming language [83], also due to the influential Structure and Interpretation of
Computer Programs textbook [3].

2.4 Python is increasingly popular for introductory pro-
gramming

The changes in which language to choose for the introductory programming course
were only partially motivated by the newer language being “better” in some objective
sense than the one previously used.

In some sense, one could argue that fundamental programming concepts can be
expressed in many languages, and thus the choice of which language to use is at best of
secondary importance, if not irrelevant. However, one of the key concerns of instructors
is attending to the authenticity factor.

Authenticity is not confined to the programming language, as many other factors
contribute to it, such as which problems learners are required to solve and in which
domain. However, the programming language is certainly one of the key and most
visible factors.

Learners are more likely to be interested in learning a subject if they consider it
relevant (see Albrecht and Karabenick [8] for a review of studies on relevance, and
a critical discussion of some objections). Many students, especially those who delib-
erately choose to study computer science at a university, recognize programming as
a skill that will be necessary in their future careers. Industries gradually update the
programming languages in use, and with a cascading effect, this has repercussions on
the programming language taught in universities.

At the time of writing this dissertation, the TIOBE index’, an indicator of the “popu-

https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

20 2.5 But Python is not a simple language

larity” of programming languages, reports Python as being the most popular language,
with a large gap to the next most common ones. GitHub, a platform used by develop-
ers to host programming code, reports that in 2024 Python became the most popular
programming language for projects hosted on GitHub [245]. The language enjoys a
vast set of libraries that enable its effective use in many domains, including “artificial
intelligence” with its recent expansion.

The industrial relevance, the vast choice of available libraries, and the alleged
simplicity—more a myth than a fact, as we discuss below—led to Python becoming
particularly common in introductory programming. An update in 2021 to the survey
among universities in the USA showed how Python and Java are the two most common
languages used for introductory programming, with the popularity of Python growing
significantly [239].

The popularity of Python is also spreading at educational levels that come be-
fore the university. Curricula, such as the framework curriculum for informatics in
Swiss high schools, usually do not prescribe a specific programming language. Virtu-
ally all Swiss high school teachers, however, use Python as the common language for
the mandatory programming part. Other languages are relegated to more advanced
and specific usages, such as JavaScript to program for the web.

2.5 But Python is not a simple language

One of the most commonly trumpeted arguments in favor of Python’s adoption is its
supposed “intuitiveness” or “minimal syntax”. By contrast, Java has a reputation for
being verbose and less ideal for introductory programming.

A simple ‘Hello, World!” example, which is still the choice for many teachers as the
very first program, requires creating a class, declaring inside it amain method, and call-
ing the println method on the out object, a static field in the System class. Novices
are usually not overwhelmed with this complex explanation from the beginning: teach-
ers usually hand out code that students need to accept without fully understanding it.
In this sense, it is correct to claim that an ‘Hello, World!” example in Python does not
require any of that.

Developments in recent years have weakened this argument. First, Java has in-
troduced a Read-Eval-Print-Loop (REPL) called jshell [85], which can be used to
interactively evaluate expressions, without requiring I/0. This interactive shell can be
exploited in pedagogical settings [212]. Second, after some years of experimentation,
Java 25 introduced “compact source files” and “instance main methods” [133], two
new features of the language that explicitly address the pain points described above,
with beginners in mind.

21 2.5 But Python is not a simple language

Setting this opinionated debate aside, we can analyze whether claims of simplicity
hold by reviewing together a Python program that solves a problem commonly used in
typical introductory programming. Our task, dubbed “Even or odd”, is to ask the user
for a number and print whether the number entered is even or odd.

There are many styles in which this program can be written: Listing 1 shows a
reasonable Python solution for the problem.

n = int(input("Enter a number: "))
ifn% 2 ==

print(n, "is even"
else:

print(n, "is odd")

Listing 1. A Python program to print whether a number entered by the user is even or
odd.

For the beginner programmer, writing this five-line program is often much harder
than people with some programming experience would expect. Teachers may not re-
alize this due to the expert blind spot [189]. After all, “it reads like English”. A car-
icature explanation, attempting to include Python’s keywords and functions, may go
along these lines:

It's easy. We start from the beginning. We ask the user as an input to
enter a number, we turn it into an int and save it in the variable n. If n
divided by 2 has remainder zero, we print that n is even, else we print
that n is odd.

This deceptively short program, however, involves several language features:

* Function calls. There is a specific syntax necessary to call a function: the function
name must be followed by a pair of parentheses, with arguments in it. The
program uses functions with one and two arguments. Students need to learn
that arguments must be separated by commas. And even if it is not apparent from
the source code, the print function supports an arbitrary number of arguments.

* Nesting of calls. The call to input is nested inside the call to int, and students
need to handle nesting (a general property of expressions, here in the context of
function calls).

e Data types. Even though the program does not feature any explicit type anno-
tations, it requires an understanding that the input function returns a value of

22 2.5 But Python is not a simple language

type str, which must be converted to int if one later needs to manipulate it as
a number. The print function, however, supports displaying values of arbitrary
type (in the example, an integer and a string).

e Literals. The program uses both string and integer literals. Python’s syntax
requires string literals to be enclosed in quotes. The string literal used as an
argument for input ends with a space, which will also be printed because it is
part of the literal.

* Assignments and variables. The program assigns the result of evaluating an
expression on the right-hand side of the = to the variable n on the left.

» if statement. The program uses an if/else statement to take a decision. The
if statement requires specifying a boolean condition, which must be followed by
a colon, and the same is true after the else keyword. The code to be executed
in each of the two cases must be indented: each line needs to be prefixed by
a number of spaces. Unlike in other parts of the program, such as after the
comma used to separate arguments, spaces here matter and are essential to
write a correct program. In Python, indentation is not just a convention, but is
part of the required syntax.

* Operators. The condition in the program uses the % operator to compute the re-
mainder of the division, using a symbol that is unfamiliar to most non-programmers,
or worse, one they associate with a different meaning. The comparison between
the result and O is achieved using the equality operator ==, a sequence of two
equal signs.

The simple logic (“algorithm”) to determine whether a number is even or odd, i.e.,
checking if the remainder of the division by two yields zero, does not stand out in this
program. It is mixed with operations to perform input and output, with the former
being a blocking operation that pauses the program waiting for external input. This
also makes it harder to explain that programs are simply executed by the computer
one instruction at a time, proceeding automatically line after line.

The program we just discussed was only intended to serve as a basic counterpoint
to some popular and yet unsubstantiated claims surrounding the simplicity of Python.
Research thoroughly demonstrates this claim beyond the simple didactic example dis-
cussed here.

Politz et al. [211] developed a formal semantics of Python, and in doing so revealed
a number of complex aspects of the language. Issues related to scope, in particular, af-
fect many aspects across the entire programming language, including those that ought
to be reasonably considered orthogonal to it.

23 2.6 A sublanguage focused on expressions is a sensible starting point

Johnson et al. [134] showed that students exhibit a significant number of miscon-
ceptions in Python, even about basic language constructs. Mutation, sharing, and over-
loading are frequently used in Python and thus also by beginners. Sometimes, these
complex concepts “hide” behind seemingly innocuous programs, such as the += oper-
ator used on lists, which are mutable by default. Programs written by novices contain
subtle bugs, which are hard for instructors to explain, and hinder the acquisition of the
fundamental concepts. The pervasiveness of objects and references is also a common
source of errors [183].

Finally, it does not help the discourse the fact that “simple” and “easy” are used
almost interchangeably in casual conversations. Hickey [120], among others, argues
for a clear distinction between the two terms and for favoring simplicity (from the Latin
simplex, the antonym of complex) over ease. The quality of being simple, such as a
programming language that does not intertwine (complect) unrelated features, should
be preferred to the quality of being easy, a subjective judgment based on familiarity.
A language we have spent a lot of time with may not be objectively simple, but will
appear easy—to us.

2.6 A sublanguage focused on expressions is a sensible
starting point

The last two sections established that programming languages such as Python, which
are used by professionals, have the appeal of authenticity, but often also the downside
of complexity in terms of the number of language features and their interactions.

One way to tackle this complexity is to opt out of professional programming lan-
guages and work with languages developed with education in mind. Two examples
are Logo [1] and Scratch [221].

Another way is to explicitly define a coherent subset of a professional programming
language so that novices do not have to deal with the complexity of the full language.
It is usually sensible to define not only one subset, but a sequence of subsets, so that
students can graduate from one subset to the next one, gradually adding complexity
until they reach the full language (or the desired level). Steele applied this principle
of language growth to English in a remarkable talk at OOPSLA [246].

A subset of a programming language is often called a sublanguage. Computing
education has a long tradition of creating sublanguages, which have been defined for
many programming languages.

Holt and Wortman [125] created teaching versions for PL/I; Pagan [193] did the
same for Algol 68. The How to Design Programs textbook [82] introduced sublanguages
of Racket referred to as “student languages”. For Java, Roberts [223] defined one sub-

24 2.7 Abstraction and decomposition are fundamental in programming

set (“Mini-Java”) and Gray and Flatt [102] a sequence of teaching languages. Heeren
et al. [115] created Helium, a compiler for a subset of Haskell 98. More recently,
Hermans [118] created Hedy, an educational language with a syntax that gradually
evolves to reach the one of Python. Anderson et al. [11] defined subsets of JavaScript to
enable the JavaScript version of the Structure and Interpretation of Computer Programs
textbook [4].

It is no coincidence that many of these sublanguages have expressions at their core.
Expressions are syntactic phrases that are constructed compositionally and can be eval-
uated to produce a value [209]. “Functional” programming languages, such as Racket
or Haskell, undoubtedly put expressions front and center. But even in languages that
are not considered predominantly functional, expressions play an essential role. This
can be shown both theoretically and in practice. First, a study by Chiodini et al. [53]
presented the grammar of a hypothetical version of Java without expressions, in which
little is left when expressions cannot be used. Second, an analysis of Java projects writ-
ten by students showed that 53 % of tokens in the source code of the median project
were part of expression constructs (ibid.).

Despite their importance, expressions are not always adequately covered in teach-
ing. Duran et al. [78] report anecdotal evidence that “many programming teachers and
introductory textbooks do not emphasize expressions and evaluation, except when it
comes to arithmetic and logic”. Chiodini et al. [53] substantiated this claim by an-
alyzing six introductory Java textbooks. The results revealed a number of misleading
explanations of expression constructs that go beyond arithmetic, such as array accesses
or class instance creations, which are presented with ad hoc rules instead of leveraging
the compositional nature of expressions.

2.7 Abstraction and decomposition are fundamental in
programming

The notion of abstraction has been subject to a myriad of definitions, even just within
the field of computer science [184, Ch. 2]. A widely shared characterization, compati-
ble with the meaning used in this dissertation, is abstraction as a process of recognizing
similarities and ignoring differences (ibid.).

Abstraction is central to programming. Without the power of abstraction, the capa-
bilities of a programmer are limited by their brain. Dijkstra presented this as a widely
recognized truth already back in 1972: “We all know that the only mental tool by
means of which a very finite piece of reasoning can cover a myriad of cases is called
‘abstraction’; as a result the effective exploitation of his powers of abstraction must be
regarded as one of the most vital activities of a competent programmer.” [75].

25 2.7 Abstraction and decomposition are fundamental in programming

The centrality of abstraction extends from programming to human thinking in gen-
eral. Hoare wrote: “in the development of our understanding of complex phenomena,
the most powerful tool available to the human intellect is abstraction” [121]. Hudak
entitled a section of his programming textbook “Abstraction, Abstraction, Abstraction”.
The attention-grabbing title answers the question “What are the three most important
ideas in programming?” [129], referring to three important types of abstraction com-
monly practiced by programmers.

Problem decomposition is similarly fundamental and closely related to abstrac-
tion. Milewski describes decomposition, along the corresponding composition of sub-
solutions to solve an overall problem, as “the essence of programming” [182].

Problem decomposition extends beyond programming and is indeed a general tech-
nique. In his classic book on how to solve problems, Polya suggests “decomposing and
recombining” [213] as one of the strategies to deal with problems.

Programming educators acknowledge this importance. Using a Delphi process,
Goldman et al. [99] attempted to characterize which concepts instructors deem impor-
tant and difficult in introductory programming. “Abstraction/Pattern recognition and
use” and “Functional decomposition, modularization” are both ranked as very impor-
tant (8.8 and 9.3 respectively, on a scale up to 10) and difficult (9.0 and 7.9). Mirolo
et al. [184] provide a broad overview of abstraction in computer science education,
including some strategies to teach and assess it.

Abstraction and problem decomposition are also core components of what has re-
cently been termed “computational thinking” [281, 238]. In 2008, Wing described
abstraction as “the essence of computational thinking” [280]. Yet, a fundamental and
general argument in favor of decomposition and abstraction was already put forward
in 1690 by the philosopher Locke [165]:

The acts of the mind, wherein it exerts its power over simple ideas, are
chiefly these three:

1. Combining several simple ideas into one compound one, and thus all
complex ideas are made.

2. The second is bringing two ideas, whether simple or complex, together,
and setting them by one another so as to take a view of them at once,
without uniting them into one, by which it gets all its ideas of relations.
3. The third is separating them from all other ideas that accompany them
in their real existence: this is called abstraction, and thus all its general
ideas are made.

26 2.8 Language models may raise the importance of abstraction and decomposition

2.8 Language models may raise the importance of abstrac-
tion and decomposition

As discussed, nearly all educators concede that abstraction and decomposition are im-
portant topics [99], but some refrain from teaching them explicitly during the first
introductory course and defer them instead to more advanced courses. After all, one
could argue, there are already signs that students struggle in programming courses:
not everyone succeeds (Section 2.1), and even writing very short programs such as
Listing 1 can be extremely challenging (Section 2.5).

To complicate matters even further, recent years have witnessed a surprising in-
crease in the capabilities of language models, which students are increasingly using to
solve all sorts of tasks, including programming problems.

2.8.1 Models are great at generating code

A statistical model for a language represents the probability of a given sentence to
occur [24]. Once the model is created, one can then use it to make predictions about the
word that would most likely follow any given sequence of words (i.e., the word having
the maximum likelihood of appearing next, as determined by the model). Historically,
language models have been used to model natural languages, but they can also be
employed to model and generate text of a programming language. The problem of
generating language is inherently difficult due to the curse of dimensionality [24]: the
number of parameters of such a model explodes even with relatively modest vocabulary
sizes and lengths of the sequence of words considered for the prediction.

More recently, the increase in computing power, the availability of large datasets,
and new architectures for neural networks [264] have enabled the training of lan-
guage models with an increasingly large number of parameters. In 2020, Brown et al.
[36] trained a model with 175 billion parameters, called GPT-3, that achieved surpris-
ing levels of performance in several different domains without extensive task-specific
fine-tuning. Even without being specifically trained for programming, GPT-3 already
has rudimentary capabilities for generating basic programs starting from Python doc-
strings.

To improve its performance, in 2021 researchers have fine-tuned it using publicly
available code on GitHub [46]. On a benchmark consisting of 164 programming prob-
lems, the fine-tuned model solved 38 % of problems with its first prediction and 78 %
within 100 tries. In a typical introductory programming course, students’ tasks are
remarkably similar to the examples on which the model has been trained: an exercise
often consists of just implementing one function using the programming language re-

27 2.8 Language models may raise the importance of abstraction and decomposition

quired by the course, given a natural language description of its behavior and possibly
some input-output pairs to clarify the problem and its corner cases.

2.8.2 Models ace introductory programming tasks

In 2022, Finnie-Ansley et al. [90] investigated the performance of this fine-tuned model
on 23 programming questions used as a summative assessment in an introductory pro-
gramming course at their university, as well as on 6 different variations of the “Rainfall
problem” (Section 2.1). The model performed moderately well on the “Rainfall prob-
lem”, averaging between 19 % and 63 % of the available points [90, Tab. 4], and would
score in the top quartile of the class when measuring its performance on the assessment
problems.

Since then, the capabilities of Large Language Models (LLMs) have increased even
more. GPT-4 and coeval models are able to solve programming tasks that previous gen-
erations of models struggled on. Savelka et al. [230] showed that GPT-4 is able to solve
a significantly larger fraction than its predecessors of multiple-choice questions and
programming tasks typically used in introductory and intermediate courses in Python.

This surprising performance raises profound questions on how assessments should
work for beginner programmers. Here, we leave the assessment concerns on the side
to speculate on what, if anything, is still worth learning in programming.

2.8.3 What remains of programming then?

Attempting to predict the future is always a risky endeavor, particularly at times when
technology changes rapidly, as LLMs did over the last three years. Claims are at risk of
soon being disproved by the course of events.

However, the impact of LLMs is too big to be ignored in a dissertation written in
2025 that focuses on teaching introductory programming. In the introductory chapter
of this dissertation, we echoed quotes from prominent Turing laureates to justify the
importance of teaching informatics to everybody. And yet, there now exists a technol-
ogy that can generate program code— one of the central activities of computing—at
will and without any effort.

Merely having code written in a programming language cannot be the ultimate goal
of programming education. We already built tools, LLMs, that can do that instantly.

If there is still any value left in teaching programming, it must be in something
that goes beyond the final artifact (i.e., the code). Instead of focusing on the result of
programming, the emphasis should probably be placed on the process of programming.

What does the process of programming look like, even if the ultimate result of it
were to be a prompt to be fed to a LLM? Any nontrivial problem to be solved needs

28 2.9 We need to engage a diverse population of learners

to be understood and divided into smaller problems until those become manageable.
This may seem like an academic perspective on programming, but programming prac-
titioners in industry recognize this as well. In the words of one of them: “If you work
as a professional developer, that is the bulk of the work you get paid to do: breaking
down problems” [79].

The importance of learning how to decompose problems is acknowledged even by
leading executives at companies that sell services based on LLMs and have a clear busi-
ness interest in pushing the narrative that “learning to code is no longer needed”. When
asked what should one learn instead, the chief of an “artificial intelligence” company
suggested three skills: “learn how to think, learn how to break down problems, learn
how to communicate clearly [...]” [254, 3’37”].

Once we reach a problem that is small enough, LLMs can solve it by producing new
code. Inherently, a language model works by repeatedly generating one token after
the other. Developers who use code completions powered by a LLM in their Integrated
Development Environment (IDE) know this phenomenon. Generating new code is just
one keyboard shortcut away, and models easily generate many concrete variations of
existing code.

Without adequate forms of abstraction, the code quickly becomes hard to correctly
extend or fix even for the model itself (on top of being unmaintainable by humans in the
long run). A programmer needs to recognize the need for abstraction, to know which
means to do so are offered by the programming language, and to introduce them at
suitable moments.

The hypothesis we suggest here is that LLMs may further increase the importance
of abstraction and problem decomposition. Time will tell whether this proposition
proves accurate. This dissertation does not offer any conclusive proof of this hypothesis:
it assumes—based on reasoned justifications, but perhaps also reflecting the author’s
aspirations—that abstraction and decomposition are worthwhile learning goals, and
presents an approach to teaching them.

2.9 We need to engage a diverse population of learners

The “Even or odd” program of Listing 1 is not only more complex than it appears at
first glance (Section 2.5) and readily solvable with a modern LLM (Section 2.8.2): it
also solves a fundamentally uninteresting problem.

Complete novices are often promised that one of the great powers that comes with
learning to program is the ability to build compelling projects. However, solving in-
teresting tasks demands programming skills that are difficult to acquire at the very
beginning.

29 2.10 Using graphics is a way to engage novices

Inexperienced students may be disappointed when presented with a problem like
“Even or odd”. Determining whether a number is even or odd is a computation that they
can already do in their heads, and there is little to be gained from having a computer
solve the same problem. Running their own solution on a computer does not unlock
new capabilities. In other words, many may not see the relevance of programming.

This issue is more important now than before, when programming was taught
mostly to students who had actively chosen to study a scientific discipline at a uni-
versity. Programming is now part of mandatory courses in computer science in high
school, in which all students from different backgrounds and interests are asked to
learn the rudiments of the discipline (Section 1.1).

The search for strategies to engage this diverse population of learners is ongo-
ing. One possible strategy is to give more space to creativity; this can be implemented
through various pedagogical techniques and in many domains, such as robotics, games,
and music [236]. Below we consider one domain in particular: graphics.

2.10 Using graphics is a way to engage novices

Engagement has long been sought by educators, as it has been robustly correlated with
positive outcomes of improved learning, student success and development [260].

Multiple studies report positive effects on engagement from graphics-based peda-
gogies. Sloan and Troy [241] introduced a new introductory course (“CS 0.5”) before
the traditional first course in programming (“CS1”) and observed good success in re-
taining students using the Media Computation approach [105]. Porter and Simon [214]
discuss how three combined instructional changes made to an introductory program-
ming course (using the Media Computation curriculum, adopting peer instruction, and
encouraging pair programming) retained almost one-third more students (from 51 %
to 82%). At the same university, the curriculum also increased pass rates for students
majoring in Computer Science [240].

After having accumulated a decade of experience with media computation curric-
ula, Guzdial [108] summarized their observations on the impact on engagement. The
highlights of these findings include gains in student engagement, which led to a drastic
reduction in failure rates (from 50 % to under 15 %). Moreover, female participation
in the courses increased, stabilizing above 40 %.

Courses that adopt turtle graphics also seem to enjoy similar boosts in motivation.
Bakar et al. [15] used turtle graphics in an introductory programming course in Java
and observed high levels of motivation in students, measured across four dimensions:
attention, relevance, confidence, and satisfaction. Santana and Bittencourt [228] used
turtle graphics to gradually transition from block-based programming to Python and

30 2.10 Using graphics is a way to engage novices

noted how “students remained enthusiastic about the course” despite the challenges.
Summarizing a number of studies with Logo, Clements and Meredith [58] note that
teachers observed increased student self-esteem and confidence, provided that students
are given enough autonomy.

At least for this aspect, the literature seems almost unanimous: graphics-based
approaches increase engagement.

Chapter 3

There Are Many Approaches to Using
Graphics

This chapter reviews related work on using graphics for introductory programming. It
first clarifies what is meant by graphics in programming education in this dissertation,
and then presents existing approaches by grouping them into three “families”.

3.1 Thescope is textual programming languages with graph-
ical output

There are multiple senses in which programming education can be related to graphics.
This section clarifies the scope of our work.

A fundamental separation exists between graphical and text-based programming.
Doing “graphical programming” commonly means using a visual programming lan-
guage to create programs graphically, instead of textually. Scratch [171] is an exam-
ple of a visual programming language popular in educational contexts at the school
level. Scratch programs are composed of “blocks” connected visually. Alice [61] is
another example of a block-based programming environment in which students create
3D graphics to be used for animations, story-telling or games.

The success of block-based visual programming languages led to the creation of
Blockly [199], a library that facilitates the creation of other block-based languages.
Scratch also inspired Snap! [113], a block-based language in which users can define
their own blocks. Block-based programming languages can be effective in reducing the
occurrence of certain classes of issues in novices [274]

This dissertation, however, focuses on text-based programming languages, which
are used more frequently in high school and university-level educational contexts.

31

32 3.2 We review three approaches using the classical example of a house

Even programs written using text-based programming languages can involve “the
domain of graphics” to different extents. For instance, a program can produce “static”
graphics (2D or 3D), “animated” graphics, or “interactive” graphics—going towards
Graphical User Interafaces (GUISs).

Creating interactive graphical programs has also been explored as a possibility to
teach introductory programming (e.g., [81, 172]). However, in this review of ap-
proaches we restrict our focus to 2D graphics, textual programming languages, and
tools designed with education in mind; already within this scope, there is radical vari-
ation in designs. GUI libraries, game engines, and block-based programming are thus
excluded here. Some of the libraries mentioned below do support some form of user
interaction, but that aspect is out of scope for this thesis.

Table 3.1 summarizes the four combinations that arise from combining two types of
programming languages (textual or visual) and two types of output (textual or graph-
ical). Each combination is exemplified with a possible programming task.

Output
Textual Graphical
Textual Add two numbers in Java Draw a square in Python
Visual Say “Hello, World!” in Scratch Draw a triangle in Snap!

Table 3.1. Example programming tasks for each combination of type of Programming
Language (PL) and Output. The highlighted combination is the focus of this thesis.

3.2 Wereview three approaches using the classical exam-
ple of a house

To illustrate, we pick a representative library from each family and use it to write a
tiny Python program that creates the time-honored example graphic of a “house” as
shown in Figure 3.1. The house consists of a single “floor”, represented by a square,
atop which sits a “roof”, an equilateral triangle.

33 3.3 Graphics can be drawn using global coordinates on a canvas

A

Figure 3.1. A house with a single floor and a roof (adapted from Abelson and diSessa
[2], originally from Papert and Solomon [196]).

3.3 Graphics can be drawn using global coordinates on a
canvas

School geometry introduces the two-dimensional Cartesian coordinate system, which
describes a point (x, y) by its horizontal and vertical offset from the origin (0, 0) of the
plane. Indeed, many graphics libraries used for teaching novices are centered around
the Cartesian coordinate system: shapes are drawn on an empty canvas of a certain
size by specifying their positions with coordinates. Examples include Java2D [144],
acm.graphics, and the Portable Graphics Library derived from the latter [224], as
well as Processing [219], which is popular in the field of digital art.

Listing 2 draws a house with cslgraphics [100] for Python, another example of
a library in this family. We create an empty canvas (implicitly of size 200 x 200) and
then add shapes to it, specifying their absolute positions in a global coordinate system
with the origin located at the top-left corner.

paper = Canvas()

floor = Square(100)

floor.moveTo (50, 137)

paper.add(floor)

roof = Polygon([Point(0, 87), Point(50, 0), Point (100, 87)])
paper.add(roof)

Listing 2. Drawing a house with the cslgraphics library.

However, not all libraries in this family require calling methods on objects. For ex-
ample, Designer [123], another educational graphics library for Python, creates images
with plain function calls and modifies their state with subscripts that update attributes,
asin floor['x'] = 50.

34 3.4 Graphics can be drawn controlling a turtle

3.4 Graphics can be drawn controlling a turtle

Turtle graphics was introduced by Papert as a simple way to draw with computers as
early as elementary school [195]. It is based on a metaphor, sometimes made tangible
with a robot, of the programmer controlling a “turtle” that carries a “pen”. The turtle
follows a sequence of commands, leaving a trace that results in a drawing.

Originally introduced with Logo, turtle graphics has become widespread in intro-
ductory programming. Libraries exist for several programming languages, and some
are even included in languages’ standard libraries. This is the case for Python’s turtle,
with which we draw the house in Listing 3.

for _ in range(4):
forward(100)
right (90)

left(60)

for _ in range(3):
forward(100)
right (120)

Listing 3. Drawing a house with Python’s turtle library.

Commands express movements relative to the turtle’s current state. The effect of a
command such as forward(100) depends on the turtle’s location and direction.

In contrast to canvas-based libraries, there are no global coordinates. The per-
spective is local, relative to the turtle. Papert argued that turtle geometry is learnable
because it is “body syntonic” [194]: the turtle’s perspective is the same as the learner’s.

However, most turtle libraries allow some form of positioning using global coordi-
nates, partially going against Papert’s principle of body syntonicity. Python’s turtle
offers goto and setpos to move the turtle to an absolute position (and possibly draw
a line), and teleport to jump to absolute coordinates without leaving a trace on the
canvas.

An attentive reader probably noticed that the program in Listing 3 only draws the
outline of the house. Turtle graphics focuses on drawing lines, as opposed to shapes.
When the end point of a sequence of lines matches its beginning, a line forms a closed
path and effectively represents the outline of a shape. This shape can be colored as
shown in Listing 4, using the begin_fill and end_fill functions to denote the
shape to be filled.

Throughout this dissertation, we will use turtle graphics to draw outlines of shapes,
enabling a fairer comparison to the other approaches. Nonetheless, “emulations” are

35 3.5 Graphics can be treated as values to compose

fillcolor("yellow")

begin_fill()

for _ in range(4):
forward (100)
right (90)

end fill()

Listing 4. Filling a square with Python’s turtle library.

possible in both directions: turtle’s closed paths can be filled, and shape-based ap-
proaches can mimic lines by drawing thin rectangles of the desired width.

This dissertation focuses only on controlling one turtle at a time by calling simple
functions. Some turtle environments, including the one offered by Python, allow multi-
ple turtles which are modeled as objects and commanded with method calls. Caspersen
and Christensen [42], for example, described a pedagogical Java implementation that
uses methods and objects.

3.5 Graphics can be treated as values to compose

Both families presented so far produce graphics by “direct rendering”, but that is not the
only conceivable way to create graphics. A different approach was proposed in 1982
by Henderson [117], who introduced a purely functional way to describe pictures.
The textbook Structure and Interpretation of Computer Programs adopted the idea with
a “picture language” [3, Sec. 2.2.4].

Finne and Peyton Jones later proposed the idea of composing pictures from prim-
itives using what they called “combinators” [89]. Some of these principles have been
adopted in the textbook How to Design Programs [82]: an “image teachpack” [18] ac-
companies the book and is available as a Racket library. Felleisen and Krishnamurthi
discuss how the teachpack enables students to construct algebraic expressions that
“consume and compute pictorial values” [84].

Libraries in this family treat images as values. There are functions that produce
primitive shapes, such as rectangles and circles. Other functions combine images into
more complex ones; for example, an image may be placed above or beside another.
Images can only be composed, not mutated.

The libraries in this family tend to be written for languages that embrace the “func-
tional” programming paradigm. In Listing 5, we build the house with Pyret [256], an
educational programming language whose syntax is similar to Python’s.

The Pyret environment offers a REPL capable of rendering graphics. At the end of

36 3.5 Graphics can be treated as values to compose

floor = square(100, "solid", "yellow")
roof = triangle(100, "solid", "red")
house = above(roof, floor)

Listing 5. Drawing a house with Pyret’s image module.

the program in Listing 5, house is an expression whose evaluation produces a graphical
value, visible to the student within the environment.

Chapter 4

Existing Approaches Have Pitfalls

This chapter analyzes the existing approaches in light of the main goal of this thesis:
teaching introductory programming in an engaging way, emphasizing abstraction and
problem decomposition.

We refine this goal into three specific goals that drive our analysis of the existing
approaches. First, we focus on problem decomposition, stating as a goal that libraries
should enable students to decompose a graphic into a sub-graphic without introduc-
ing unwanted dependencies (a goal we dub clean problem decomposition, Section 4.1).
Second, we consider whether there are pitfalls that hinder meaningful engagement
(Section 4.2): students should be engaged with programming not frivolously, but to
learn essential aspects such as abstraction. Third, we argue that approaches should be
suitable for introductory programming and thus offer a manageable complexity (Sec-
tion 4.3) that enables them to be used with beginners.

RQ Given the three above guiding goals, what pitfalls are there in using existing
graphics approaches for introductory programming education?

Table 4.1 summarizes the eight pitfalls we identified in the existing approaches accord-
ing to these three guiding goals. In the next sections, we explain and justify each pitfall
by drawing on the research literature on computing education.

4.1 Decomposing a problem cleanly is hard

Decomposition—along the corresponding composition of sub-solutions to solve an over-
all problem— has been considered “the essence of programming” [182]. Problem de-
composition is also at the core of “computational thinking” [281]. However, a look at
student programs reveals that achieving proper decomposition and modularization is
difficult for novices [142].

37

38 4.1 Decomposing a problem cleanly is hard

Table 4.1. Pitfalls identified in the libraries which represent the three families. X means
a pitfall is present, (X) denotes partiality.

7]
2
=
&
7]
S w @ G‘
Se 23 T
SY E5 §w
g & p & g
© [&I%] B A
wn © o o
Bh Lo &
83 BT 52
Guiding Goal Pitfall b E& O&
Global coordinates X X
Clean Problem Decomposition Turtle’s state X
Local coordinates X X
External graphics X X
Meaningful Engagement Rich API 09) * X
Scaling X X
Extra language features
Manageable Complexity . guas X
Mutability X

For decomposition to be effective, subproblems need to be independent. A subprob-
lem that is tightly coupled to other subproblems cannot be solved in isolation. The main
promise of decomposition is being able to reason locally and focus on each subproblem
separately. Without independence, we have to keep multiple interacting subproblems
in mind simultaneously, which increases our cognitive load. Good decomposition is
also closely linked to abstraction and reuse: if we create the right abstraction (e.g., a
function) to solve a (sub)problem, we can reuse the abstraction when the solution is
needed again.

As we discuss the pitfalls, we again resort to the “house” from Figure 3.1 as a
small-scale running example. The problem of drawing the house features two smaller
subproblems: drawing the roof and drawing the floor; their solutions can be combined
to solve the overall problem.

A problem is decomposed cleanly when subproblems do not depend on each other,
except for dependencies that are desired because they are inherently part of the prob-
lem (e.g., we may want to keep the roof and the floor of the house at the same width).
These latter dependencies should be made explicit. When an approach introduces a
hidden, unwanted dependency, it violates the goal of clean problem decomposition.

39 4.1 Decomposing a problem cleanly is hard

4.1.1 Global coordinates break independence

In Listing 2, coordinates such as (50, 137) implicitly depend on the origin of the
plane, a globally shared “zero” that acts as a reference point. The two subproblems do
not have independent subsolutions. When only one subproblem changes, this becomes
an issue.

Consider an increase in the height of the roof, from 87 to 120 for example. This
also requires a change to the position of the floor, whose center should be moved to
(50, 170) instead of (50, 137).

Decomposition should produce subproblems that are independent from each other.
We would like the roof problem to be independent from the floor problem, so that we
get local reasoning: we do not want to worry about the roof when writing the code for
the floor. A global coordinate system (Section 3.3) breaks this promise.

4.1.2 Turtle state also breaks independence

One of the original goals of “turtle geometry” [195] was to eliminate the problems
caused by global coordinates. The turtle provides a local perspective to drawing. Com-
mands like “move forward” and “turn right” represent movements and rotations relative
to the turtle’s current position and direction. This makes it easier to extract the first
three lines of Listing 3 and create a reusable procedure to draw a square. Similarly, the
last three lines can be extracted into a procedure that draws an equilateral triangle.

We would now like to use these smaller procedures as “building blocks in more
complex drawings” [2]. Things are not so simple, however, as shown by the extra
command on Line 4 of Listing 3: 1left(60). To compose the subsolutions we need
to know the turtle’s position and heading after executing the first procedure; we may
also need to adjust that state with “interface steps” [2, 111] before executing the sec-
ond procedure. This happens because the turtle’s position, heading, and pen status
constitute a global state. The turtle’s state is not local to every procedure; it is shared,
mutated, and kept across procedures.

Harvey [111] pointed out that programs are “much easier to read and understand
if each procedure can be understood without thinking about the context in which it’s
used”. However, turtle functions may only compose cleanly with extra instructions (the
“interface steps”), adding to the programmer’s burden. Harvey’s partial patch for this
issue is to have a higher-order procedure reset the turtle’s heading (ibid.). While an
experienced programmer might consistently apply this patch, it seems unlikely that
novices could and would. And in any case, one still needs to deal with the rest of the
turtle’s state, which includes its position.

40 4.1 Decomposing a problem cleanly is hard

4.1.3 Local coordinates are prone to misuse

Listing 5 (in Pyret) exhibits clean decomposition: the roof and floor are created in-
dependently, then combined as desired into a house. In this simple example, above
does the job: it succinctly conveys the programmer’s intent. However, not all graph-
ics consist of shapes next to each other. As a silly variation on the theme, imagine
the same house with the roof collapsed and lying in front of the ground floor. With
Pyret’s library, overlay-align("center", "bottom", roof, floor) does the
trick, specifying that the composite image should have the two originals with their bot-
tom edges aligned at the center. Aligning enables the creation of a big class of more
interesting graphics.

One might rightfully object that not all graphics are that simple and these combi-
nators are still not general enough. And indeed, for maximal freedom in overlaying
images, Pyret’s library also offers multiple combinators that involve exact offsets. For
instance, overlay-xy “initially lines up the two images upper-left corners and then
shifts img?2 to the right by dx pixels, and then down by dy pixels”. Some curricula
encourage beginners to use such functions that operate on local (relative) coordinates.
For example, students might need them to place a rocket at a certain height onto a
scene [84].

Unfortunately, anecdotal evidence shows that students who know of these functions
frequently misuse them, wielding them where simpler combinators would suffice. An
image can act as a background “scene” to overlay other images on it at specific positions.
This effectively reintroduces a shared origin, mimicking the global coordinate system.

The very teaching materials can exacerbate the issue by suggesting this problematic
usage of local coordinates (e.g., [28, Step 11] and [234, p. 73]). Listing 6 reproduces
an example [28, Step 11] taken from an “Hour of Code” activity by Bootstrap, a lead-
ing curriculum that embraces Pyret. Despite the availability of a function that would
align the two images on their left edge, the activity suggests that learner use coordi-
nates. This couples the alignment location with the size of the two images, marring
the otherwise clean decomposition.

eye = circle(30, "outline", "black")
pupil = circle(10, "solid", "black")
googly-eye = put-image(pupil, 10, 30, eye)

Listing 6. A googly eye with local coordinates, created with Pyret’s image library.

41 4.2 Learners’ engagement should be meaningful

4.2 Learners’ engagement should be meaningful

4.2.1 External graphics may lower motivation

When a student creates their first graphical program from scratch, their sense of em-
powerment is often palpable: it is not too hard to write a program that displays images,
not just characters in a terminal! Without too much effort, the student draws a house
or a tree or a flag and declares victory. That joy may quickly give way to disappoint-
ment when the student realizes how hard it is to build graphics from basic shapes
and make them look decent compared to the slick artwork they see every day on their
smartphone. Suddenly the house does not look that nice.

In order to recover the initial excitement, or perhaps to quickly enable non-trivial
graphics for a simulation or game, teachers often explain how students can import
external images into their creations. For example, cslgraphics allows this through
the Image class and Pyret’s image library has an image-ur1l function. Designer [123]
even offers an emoji function to include Unicode emoticons. There are lots of fun
graphics out there, and letting students select custom images, possibly to be used as
sprites in a game, has been shown to contribute to their sense of ownership over the
resulting program [233]. This therefore sounds like a great feature (and it can be, in
the right context").

However, our anecdotal experience suggests that once this possibility is revealed,
many students perceive writing a program to create a graphic as much less interesting.
They frequently spend time searching for fancy images online and lose focus on what
the graphical programming was intended to highlight.

4.2.2 Rich APIs shift the emphasis from programming to libraries

Alphonce and Ventura, introducing an educational graphics library, remark on a com-
mon complaint: “non-standard libraries are a waste of time since students will not use
them outside... the one course” [9]. Their retort is also typical: “we are not teaching
students the library, we are teaching students object-orientation using the library as a
supportive mechanism” (ibid.).

Every library introduced adds something to what students need to learn. How
much is added varies significantly, depending on factors such as API size. Since time
is scarce, it is important that students invest as much of theirs as possible on learning
core content, rather than memorizing the minutiae of a particular API or poring over

!Supporting external graphics is a valuable feature especially if the approach is focused on manipu-
lating existing images, for example with Media Computation [105], rather than creating new ones from
scratch. This dissertation focuses on the creation of graphics.

42 4.2 Learners’ engagement should be meaningful

documentation.

Consider Pyret’s image module. Just for the purpose of placing an image on
top of another there are seven functions: overlay, underlay, overlay-align,
overlay-xy, overlay-onto-offset,underlay-align, and underlay-xy. There
are also ten functions for specifying triangles in various ways.

Rich APIs also deprive students of opportunities to learn. For example, students
could benefit from writing a function that creates a square or places many images
in a row. The absence of a function to scale forces to abstract and produce graphics
parameterized on the size. But if novices find canned solutions for these problems in
a library, they are less motivated to re-implement the solutions.

Libraries for novices should serve the needs of their target audience. Experienced
programmers’ convenience of always having the right function at hand can harm learn-
ers’ engagement with programming.

4.2.3 Scalable graphics reduce the need for abstraction

Together with problem decomposition, abstraction is often highlighted as a defining
element of “computational thinking” [281]. Devlin argues that “computing is all about
constructing, manipulating, and reasoning about abstractions” [72]. However, moving
from the concrete to the abstract is a significant challenge. For instance, students have
trouble defining functions when solving problems that require abstraction [110].

Graphical programs offer many opportunities for abstraction. For instance, our
house-drawing program could be parameterized with respect to roof color (or wall
color, or both). This would likely produce a generic function that takes the color as
a parameter and creates a house accordingly. such a function could then be called in
multiple places with a suitable argument. As an example, size is one obvious aspect
of a house that we may wish to parameterize—to abstract. Students often want to
experiment rapidly and repeatedly change the size of a house they just drew. In all the
programs of Chapter 3, a change in this single aspect necessitates multiple changes to
code: Listing 2 needs seven edits, Listings 3 and 5 two each. On a small scale, students
experience what professionals call an issue of maintainability.

Students may then be encouraged to abstract by defining a general function that
creates a house of a given size or by extracting the size into a constant used throughout
the program. Is it really true that this laborious refactoring is needed? Not necessar-
ily. Pyret’s image module contains a function to scale an image; cslgraphics allows
zooming the entire canvas. The availability of such functions undermines clean ab-
stractions: instead of parameterizing their houses with a size, learners can just insert
a new function call at the end to perform scaling and produce the desired visuals. No
abstraction skill is then needed or practiced.

43 4.3 Complexity should be kept under control

4.3 Complexity should be kept under control

Part of what is necessary to understand what a program does is understanding the
programming language features it uses. A programming language can be seen as an
aggregation of features [154]. In turn, each feature can be defined by grammar rules
and semantics to determine the meaning (when formalized, the semantics can be ex-
pressed for example in terms of inference rules [209]).

This section points out two pitfalls that may expose absolute novices to complexity
that is difficult to manage. This complexity can arise either because of the number of
programming language features used in the programs read and written by learners, or
because those programs use features intertwining aspects that can be orthogonal, such
as state and time.

4.3.1 At the beginning, language features should be minimized

Beginner programmers often resort to “bricolage”: extensive trial-and-error whose
“manifestation [...] is endless debugging: try it and see what happens” [23]. While ex-
perimentation is certainly valuable, ineffective experimentation is common and leads
to frustration and poor learning outcomes. A student writing a program that pro-
duces the correct output is no guarantee of understanding [140, 160]. To ensure that
learners understand the source code they write, one must be careful to introduce new
programming language constructs at a pace that novices can keep up with.

Graphics libraries vary in which language constructs they require. For example,
Listing 2 features instantiations with and without parameters, method invocations,
and lists. Introducing all these constructs “from the first day” [100], as the library’s
authors suggest, may be feasible in some contexts and under some definition of what
it means to introduce a construct. We argue that this approach is incompatible with
the goal of learners understanding the concepts in the code they write [183]. In most
circumstances, students will need to accept parts of code as “something you need to
write” with the promise that “one day you will understand”.

Graphics can be an excellent domain for learning object-oriented programming;
some authors explicitly advocate it (e.g., [9, 100, 42]). But at the very beginning of an
introductory course, object-oriented language features (and others) add complexity.
To understand the third line of Listing 2, for example, students need to understand
function invocations and how functions (which are actually methods) relate to the
objects on which they are invoked.

44 4.3 Complexity should be kept under control

4.3.2 Mutability makes it harder to reason about programs

Mutable state is often introduced early in introductory programming, even though it
breaks referential transparency and demands a more complex mental model for reason-
ing about programs [262]. There is extensive research (e.g., [243, 217, 52, 167, 48])
on misconceptions that novices have about assignments, both with primitive values and
references [170], and to (mutable) objects in general [122].

Some graphics libraries, too, model images as objects with a mutable state. Con-
sider Listing 2 and a student who wishes to add another floor to the house. A fairly
typical novice intuition would be to reuse the existing square (that floor refers to)
and to make a copy of it. The student may then write floor2 = floor to create the
copy and floor2.moveTo (50, 237) to move the new floor to the desired location.
A puzzling, unexpected result awaits such a student.

As illustrated, mutable state is closely associated with aliasing, another concept
that is fundamental but not easy: difficulties abound even among upper-level under-
graduates at a prestigious university [93]. A recent study by Strombéck et al. [248]
investigated 397 students from different programs and years and consistently found
that they were unable to predict the outcome of short programs that involved aliasing,
parameter passing, and scope.

For these reasons, we consider mutable state a pitfall in the design of graphics
libraries for complete beginners.

Part IlI

The PyTamaro Approach

45

Chapter 5

PyTamaro Is a Library Designed to Avoid
the Pitfalls

The previous chapter described eight pitfalls when using graphics to teach introductory
programming. This chapter describes a design that avoids those pitfalls.

RQ How can a graphics library be designed to support clean problem decomposition,
meaningful engagement, and manageable complexity, avoiding pitfalls?

The design is implemented in PyTamaro', a minimalist Python library publicly available
as open source at https://github.com/LuCEresearchlab/pytamaro. We illus-
trate the key aspects of the PyTamaro design gradually, alongside a teaching approach
that builds on the library’s strengths.

5.1 This is an initial example with PyTamaro

Listing 7 below shows how to draw a simple graphic with PyTamaro, resorting once
more to the house example of Figure 3.1. Unlike the code listings in Chapter 3, List-
ing 7 is a standalone Python program ready to be executed, complete with an import
statement and a function call to display the resulting graphic.

All the programming language constructs used in Listing 7 can be reasonably ex-
plained from the very beginning. This example makes no use of method calls, lists,
tuples, or even strings. In fact, understanding it requires knowing the same program-
ming language constructs needed to use the standard library to compute the square

'We pronounce PyTamaro as PyTamaro. The name pays homage to Monte Tamaro, a mountain near
the author’s home university, located between Lake Maggiore and Lake Lugano. With this in mind, does
the logo shown on the GitHub page look familiar?

47

https://github.com/LuCEresearchlab/pytamaro

48 5.2 The design encourages the definition of abstractions early on

from pytamaro import rectangle, triangle, yellow, red, above,
— show_graphic

floor = rectangle(100, 100, yellow)

roof = triangle(100, 100, 60, red)

house = above(roof, floor)

show_graphic (house)

Listing 7. Drawing a house with PyTamaro.

root of a number (one of the introductory examples used outside the domain of graph-
ics).

PyTamaro belongs to the family that treats graphics as values to be composed (Sec-
tion 3.5). Therefore, when students reason about graphical programs, they can rely
on the same mental model that they use for expressions that operate on numbers [84].
This design choice avoids three previously identified pitfalls: there is no global coordi-
nate system and no stateful turtle, and all graphics are immutable.

5.2 The design encourages the definition of abstractions
early on

Listing 7 looks similar to the earlier Listing 5 written using Pyret’s image library, and
indeed the two share many key aspects.

However, PyTamaro does not include a function for even a primitive shape such as
a square. This is a deliberate design choice so as to avoid a rich API (Section 4.2.2). Itis
a tempting pitfall: as a library author, it is easy to pack in all sorts of function variants
that are convenient for certain use cases—and users often appreciate rich APIs.

Since abstraction is so central to programming, we should immerse novices in it
early. One valuable way to do that is to have learners use abstractions that somebody
else defined; this is a good place to start and an instance of the “consume before pro-
duce” principle in instructional design [41]. We argue that novices also need early
opportunities to define their own abstractions [149] and should be placed in situations
that beg for them to define some.

The absence of a square function in PyTamaro introduces one such situation into
our context of simple graphics. Having first built some graphics that include squares,
learners begin to relate to the inconvenience of having to specify each width and each
height of each square rectangle. This motivates the definition of a general function like
that in Listing 8, which creates a square with a given side length and color.

49 5.3 Graphics enable visual problem decomposition

def square(side, color):
return rectangle(side, side, color)

Listing 8. A function to create a square with PyTamaro.

Implementing such a function is challenging for many beginners [130], but the
generalization pays off later when the function can be conveniently reused to solve
bigger problems. When drawing a bigger graphic, one does not want to worry about
the details of how to build such a basic shape. At that point, a square function comes
in handy.

This build-for-reuse approach confronts the temptation to write throw-away code.
Instead, students are encouraged to build their own “toolbox”, adding functions they
implemented and deem useful. Over time, they create increasingly interesting graphics
that are nevertheless entirely based on their very own code. We will present in detail
this idea of a toolbox in Chapter 8.

An auxiliary benefit of custom functions is that they help gradually introduce type
annotations, which are optional in Python. In our approach, students first encounter
types in PyTamaro’s documentation. They learn that red is a name for a value of type
Color and that above operates on two parameters of type Graphic and returns a
value of type Graphic. Later, we encourage explicit type annotations as in Listing 9.
We have multiple reasons for introducing type annotations to beginners: one is that
types guide the design of programs [80]; another is that types help catch errors early.
IDEs with a static type checker for Python (e.g., Thonny [12] for education) show
warnings when types do not match, giving students early feedback. Types can also
help with conceptual learning. For example, beginners have trouble with the distinc-
tion between returning a value and printing (or otherwise reporting) a result inside a
function [147]; types make the distinction explicit and checkable.

def equilateral triangle(side: float, color: Color) -> Graphic:
return triangle(side, side, 60, color)

Listing 9. A function to create an equilateral triangle, with type annotations.

5.3 Graphics enable visual problem decomposition

PyTamaro’s design does not expose any coordinate system and does not maintain state:
this supports clean decomposition into independent subproblems.

50 5.3 Graphics enable visual problem decomposition

5.3.1 Visual decomposition starts from basic examples

Graphics can make decomposition visually apparent and relatively easy to intuit. This
can be leveraged in teaching. Consider the emblem of the International Red Cross
at the top of Figure 5.1. It is easy to discern visually that the emblem consists of a
red cross on a square white field. The “big” problem of drawing the entire emblem
decomposes into two subproblems: drawing a red cross and drawing a white field.
The subproblems’ solutions compose into a solution for the whole problem, just like
the two visuals compose to produce the combined image. There is a direct mapping
between visual components and problem decomposition; a student who engages in
creating these graphics is meaningfully engaged with computing.

Crosses are not a PyTamaro primitive, so how do we draw one? We can visually
observe that the cross is made up of two bars (a horizontal bar and a vertical bar). We
must repeatedly break down our problem into smaller ones until we reach elementary
problems: a powerful recursive process for problem solving, which can be illustrated
as a tree as in Figure 5.1. Visualizing the entire (de)composition as a tree can help to
reify the (de)composition process, supporting explanations and discussions in class.

This hierarchical decomposition into independent subproblems which are then
composed is enabled by two key aspects in PyTamaro. First, each graphic is built with-
out a notion of where it lies. There is no global coordinate system, and we can reason
about the properties of a graphic (e.g., that the horizontal bar has a certain width and
height) without having to think about where the graphic will be positioned (i.e., its
coordinates). Second, functions like above or overlay produce composite graphics
that are just like primitive ones in that they, too, can be further composed.

The decomposition of a problem into subproblems that are given explicit names
or descriptions closely corresponds to the educational practice of giving labels to “sub-
goals” when trying to accomplish a bigger goal [43]. This technique of “subgoal la-
beling” originated in mathematics education but has also been adopted in program-
ming education, with a number of studies showing improvements at least in some con-
texts [174, 186, 175].

2Claiming that something comes easy to people is always a slippery slope. The ability to decompose
a 2D graphic can probably be considered a component of the broader spatial skills, which are known to
vary across individuals [116]. Parkinson and Cutts [197] investigated the relationship between these
abilities and programming, noting how the cognitive functions involved in spatial skills are also in-
volved in programming. This dissertation does not explore further the relationship with spatial skills,
but Section 5.4 provides a perspective using programming language theory that may also explain the
relationship between programming and spatial skills described by Parkinson and Cutts.

51 5.3 Graphics enable visual problem decomposition

+

/'/o;erla‘N
_—overlay ~—.
frota{e

Figure 5.1. Hierarchical (de)composition of the IRC emblem. The bars’ “cork board”
background indicates transparency.

5.3.2 There are multiple ways to (de)compose

Even many simple graphics can be (de)composed in multiple equally valid ways. Func-
tions in PyTamaro that combine graphics are designed so that equally valid solutions
indeed result in graphics that are equivalent.

Just like the binary operators that children learn in basic algebra operate on two
numbers, PyTamaro’s composition functions operate on two graphics. For example, the
beside function places two graphics next to each other, just like the + operator adds
two numbers. However, unlike the addition of numbers, the combination of graphics is
not commutative. It is visually obvious that overlaying the white field on the red cross
would not have been an equally valid way to compose the emblem in Figure 5.1.

Now consider the Italian flag shown twice at the top of Figure 5.2. We can trivially
discern that it is made of three rectangular bands; our elementary subproblems are to
draw those bands. It is slightly less obvious how to compose the rectangles, given that
we only have functions to combine two graphics. Figure 5.2 shows two equally valid
compositions: we may first join the green and white rectangles into a single graphic,
then join this composite with the red; or we may first join the white and red, and
then compose the result with the green. The equivalence of multiple ways to compose
is guaranteed by the associativity of PyTamaro’s composition functions. This is like
adding numbers: we can sum three numbers in two ways. No matter whether we start
by adding the first or the last two numbers, the result is the same.

Similarly, the rotation of a graphic by a given angle distributes over the composition

52 5.3 Graphics enable visual problem decomposition

—

T~ T~

Figure 5.2. Two different but equally valid ways to compose the Italian flag exploiting
the associativity of beside.

of graphics. This means that we obtain an equivalent graphic no matter whether we
first individually rotate two graphics and then compose them, or we first perform the
composition and then rotate the composite.

PyTamaro’s design satisfies certain algebraic properties to empower students with
maximum flexibility in the different ways equivalent graphics can be composed. A side
benefit is that graphics is an interesting domain other than numbers in which teachers
and learners may revisit these properties.

Educators also hope that some transfer also happens in the other direction, i.e.,
programming should help to learn algebra. The Bootstrap curriculum is deliberately
developed around this idea and, unlike other approaches, has shown some positive
evidence of this transfer [232]. Algebraic properties tend to be memorized without
much understanding, perhaps because most of the students will not encounter them
again in a domain that is different from numbers. There is some evidence that at least
two different examples are needed to induce an appropriate mental schema [98].

5.3.3 A flexible combinator enables (de)composing more elaborate
graphics

Not all graphics can be composed just by placing basic shapes next to each other or
overlaying them on their centers. How can we have learners create more intricate
graphics with PyTamaro and still avoid the pitfall of local coordinates (Section 4.1.3)?

In PyTamaro, every graphic has a pinning position, a designated point where it
may connect to other graphics. Graphics are composed by aligning these positions.
Pinning is invisible but readily explained by a visual analogy, a “notional machine” [86]
with a cork board, a pin, and paper cutouts (cf. Goldwasser and Letscher [100]). In
our teaching, we have used this analogy both onscreen and in tangible, unplugged
activities.

A graphic is represented by a paper cutout, such as a red square, and pinned to the

53 5.3 Graphics enable visual problem decomposition

cork board. The place where the pin is stuck is the graphic’s pinning position. When we
rotate a graphic, we do so around the pin. When we compose two graphics, we align
their pinning positions and stick a pin there through both; we then staple the cutouts
together and consider the result an inseparable composite. Figure 5.3 illustrates the
(de)composition of a less obvious graphic using pins.

) frofa‘tye

//"’c?mpo;‘\

—above—— jrotate

Figure 5.3. Drawing a heart with pin and compose (leaves are PyTamaro primitives).

In the left sub-tree, we place the semicircle above the square. In the right sub-tree,
we perform a rotation. Before joining the two sub-trees using compose, which aligns
two graphics on their pinning positions, we need to “move” the pin. We create a new
graphic on the left with the pin at its bottom-right corner, a new graphic on the right
with the pin at its bottom-left corner, and then compose. Finally, we can just rotate
the composite graphic to obtain a heart.

Since there are no explicit coordinates in PyTamaro, there are restrictions on where
a pinning position may be placed. As things stand, PyTamaro creates shapes with a
sensible default pinning position (e.g., the centroid for a triangle) and has nine standard
options for adjusting it (e.g., top_right). These nine options are determined by the
graphic’s bounding box.

Once learners familiarize themselves with this way of composing, they can draw
many more challenging and interesting graphics. Examples include tile-based worlds
composed entirely starting with PyTamaro’s primitives, such as a Pac-Man maze. The

54 5.3 Graphics enable visual problem decomposition

right-hand side of Figure 5.4 depicts a Pac-Man maze built entirely by composing PyTa-
maro’s primitives; the maze is just one example of the many tile-based worlds that can
be drawn. A key part of the solution is the decomposition of the world into the various
possible tiles. The left side of Figure 5.4 shows four “corner tiles”, two “straight tiles”,
two tiles for the ground containing a “dot” and a “pill”, and a tile with the Pac-Man
character. Drawing each group of tiles becomes an independent subproblem, whose
solution can then be easily combined with others.

HED
FFY

A 4
_€

Figure 5.4. A Pac-Man maze (right) created out of tiles (left), which are in turn com-

posed from PyTamaro’s primitives.

5.3.4 Clean decomposition means no unwanted dependencies

The house example of Listing 7 showed a first basic example of visual problem decom-
position. The floor and the roof are two subproblems, which we solve separately in the
second and third lines of the program.

A careful reader may note that, in a sense, the two subsolutions are not fully in-
dependent. The hardcoded numeric literal 100 is used to determine the width of both
the floor and the roof. As introduced in Chapter 4, the goal of achieving clean problem
decomposition means that the approach should not introduce unwanted dependencies.

To determine whether a dependency in the program is wanted or unwanted, we
need to carefully examine the statement of the problem. For the house example, the
problem was presented informally with Figure 3.1. If the problem specifies, implicitly
or explicitly, that the width of the roof and the floor should be the same, this require-
ment becomes part of the problem and needs to be encoded in the program as well.

Listing 7 uses hardcoded numeric literals to match all the other programs presented
in Chapter 3. If the width requirement just discussed has to be respected, this wanted

55 5.4 The structure of the graphic informs the structure of the program

dependency should be made explicit (e.g., by introducing a named constant width).
Similar cases occur frequently when one desires to use the same color in many sub-
graphics: the color is a wanted dependency that should be made explicit. This does
not violate the principle of clean problem decomposition, which aims to prevent un-
wanted dependencies that are not part of the problem and are introduced because of
the approach.

5.4 The structure of the graphic informs the structure of
the program

The “blank page syndrome” is a feeling experienced by a writer who finds it challenging
to commence new work. The empty page feels intimidating.

A similar feeling has been reported for novice programmers. Learners may have
watched their teacher write programs, and may have modified or completed some pro-
grams themselves. In front of an empty editor, designing a new program from scratch
can feel intimidating, with no clear direction for a starting point.

The How to Design Programs textbook [82] introduces learners to a systematic ap-
proach to program design, helping them avoid the “blank page syndrome”. The text-
book offers a “design recipe”: a guided sequence of steps leading to a template for
what the program should look like.

The template depends on the structure of the data. Indeed, a key lesson of the
textbook may be summarized as program structure follows data structure. For example,
when the “input” consists of different cases, the program will contain a conditional with
a branch for each case. When the program needs to deal with a recursively-defined list,
it will need a conditional to distinguish between the empty list and the case where there
is more to process. Several refinements of the design recipe are introduced throughout
the book, to handle different kinds of data. Felleisen et al. warn that the “design recipe”
is not enough to cover all kinds of programs, admitting that some advanced programs
require non-obvious insights [82, Part V].

Gibbons [97] pointed out that the templates for some of these more advanced pro-
grams can actually be systematically derived when also considering the structure of
the output data. In short, the program structure follows the structure of both input and
output data.

Paying attention to the structure of the output data is particularly relevant for pro-
grams that use PyTamaro to create graphics. The structure of the “input” is often
simple: typically the desired sizes, angles or colors for certain parts of the graphics.
The structure of the “output”—the final graphic—dominates because of its rich, vis-
ible structure. All the examples presented earlier in this section focused on visually

56 5.5 Abstraction arises from similarities and differences

decomposing the graphic to identify its constituent parts.

This gives graphics an important pedagogical advantage over other kinds of simple
data common in introductory programming, such as numbers®. Except for overlapping
parts, the structure of a graphic is directly visible for the learner in the problem state-
ment. Decomposing a graphic is thus not a frivolous process confined to the graphics
domain, but a process that follows a fundamental principle of program design. The de-
composition of the graphic can directly inform the structure of the program that creates
1t.

5.5 Abstraction arises from similarities and differences

This section reviews two fundamental mechanisms to teach abstraction with PyTamaro.
The two techniques are not novel per se: they are fundamental in programming. Here,
we illustrate them using the domain of graphics, which exploits the power of graphics
of being visual to hopefully make them more understandable.

5.5.1 We can give a name to identical graphics

“One of the most basic ideas in programming—for that matter, in everyday life—is to
name things” [129]. Giving a name to things is a first form of abstraction: not only can
we avoid having to remember a specific value, but we can also use it multiple times in
our program.

In the graphics domain, when we decompose a graphic, we may give names to the
different parts. We did that in Listing 7: we gave the name roof to the red triangle,
floor to the yellow square, and we even named the entire graphic house.

Names become extremely important when a sub-graphic occurs identically more
than once in a graphic. Consider the pair of eyes shown in Figure 5.5 and assume we
cannot use names.

Figure 5.5. A graphic showing a pair of eyes.

Listing 10 shows the single expression necessary to create a pair of eyes. This
expression appears to be a convoluted way to express what we see in Figure 5.5: there

®In principle, a lone number could also be treated as structured data (as a Peano number: 2 is the
successor of the successor of zero), but it is exceedingly rare to do so, especially in introductory pro-
gramming.

57 5.5 Abstraction arises from similarities and differences

beside(
overlay(ellipse(100, 100, black), ellipse(200, 200, green)),
overlay(ellipse(100, 100, black), ellipse(200, 200, green))

Listing 10. A single expression to create a pair of eyes.

are two eyes and they are identical in every way. When we leverage the power of
giving names to expressions, we can write the expression to create an eye only once
and name it. From that point on, we can use that name in place of the whole expression.
Listing 11 shows an example of this process, introducing the name eye, which can then
be used twice in the expression in the second line.

eye = overlay(ellipse(100, 100, black), ellipse(200, 200, green))
eyes = beside(eye, eye)

Listing 11. Introducing a name to abstract Listing 10.

This process is not merely a trick to avoid typing (or copy-pasting) a few charac-
ters. Working with abstractions is necessary to build even minimally more elaborate
graphics: more broadly, to write programs that solve any problem that is not trivial.

Some IDEs offer this operation and present it as a refactoring operation called “ex-
tract constant” or “extract variable”. Throughout this text, we will mainly use constant
to refer to this abstraction, even though the language construct used in Python is tech-
nically a variable that can be reassigned.

Debates on terminology aside, the important bit is the ability to abstract by intro-
ducing mnemonic names to refer to an expression and being able to later use those
names.

5.5.2 We can create a function for similar graphics with few differ-
ences

The simple definition of a constant only works for identical graphics. It is common,
however, to have the need to create multiple graphics that share a lot of similarities
and only differ by a few details.

Books for children and newspapers sometimes feature a curious puzzle, dubbed
“Spot the difference™, which asks the reader to spot all the differences between two

“A visual example can be found at https://en.wikipedia.org/wiki/Spot_the_

https://en.wikipedia.org/wiki/Spot_the_difference

58 5.5 Abstraction arises from similarities and differences

images that are identical except for a few differences. This game of “similarities and
differences” can also be “played” by students when they recognize that two graphics
have a lot in common.

Figure 5.6 shows two variants of the Pac-Man sprite, which are created with the
code in Listing 12. A circular sector is created with the first radius “pointing towards
3 o'clock”, and therefore needs to be rotated by a suitable angle to resemble Pac-Man.

The two graphics contain many similarities: they are both in the shape of a circular
sector, they both share the same radius, and they are both yellow. One clear difference
is the angle of the circular sector (280 degrees in one case, 340 in the other). The angle
by which the circular sector is rotated is also different (40 and 10 degrees, respectively,
assuming that the sector starts from “3 o’ clock” and opens clockwise).

Figure 5.6. Two graphics representing the Pac-Man sprite with either a wide open
mouth or an almost closed mouth.

pacman_open = rotate(40, circular_sector(200, 280, yellow))
pacman_closed = rotate(10, circular_sector (200, 340, yellow))

Listing 12. A program to create the two graphics of Figure 5.6.

Once we have recognized similarities and differences, abstraction is relatively straight-
forward. We can define a function whose body (i.e., the expression in the return
statement) consists of the code in common between the two expressions, with similari-
ties left as placeholders: rotate(..., circular_sector(200, ..., yellow)).
We give a name to each difference, which becomes a parameter of the function, and is
used in the expression to replace the

Listing 13 shows the result of this process of abstraction. The two expressions in
Listing 12 have been replaced by a call to the newly introduced pacman function, which
is able to create Pac-Man sprites with an arbitrary angle for the circle of the body and
an arbitrary angle of rotation.

difference.

https://en.wikipedia.org/wiki/Spot_the_difference
https://en.wikipedia.org/wiki/Spot_the_difference
https://en.wikipedia.org/wiki/Spot_the_difference
https://en.wikipedia.org/wiki/Spot_the_difference
https://en.wikipedia.org/wiki/Spot_the_difference

59 5.5 Abstraction arises from similarities and differences

def pacman(body_angle, rotation_angle):
return rotate(rotation_angle,
circular_sector (200, body_angle, yellow))

pacman_open = pacman(40, 280)
pacman_closed = pacman(10, 340)

Listing 13. Introducing a function to abstract Listing 12 with one parameter for each
difference.

Students may still rightfully object that there is only one true difference between
the two graphics of Figure 5.6: how wide is the aperture of Pac-Man’s mouth. There
is indeed a relationship both between the mouth angle and the angle for the body
(together they form a full circle) and the mouth angle and how much the circular
sector needs to be rotated so that the mouth opens in the center (the rotation needs to
be half of the mouth’s angle).

Listing 14 shows the final result of this abstraction process. The pacman function
has only a single parameter, the opening angle of the mouth, from which the two
previous parameters can be computed.

def pacman(mouth_angle):
body_angle = 360 - mouth_angle
rotation_angle = mouth_angle / 2
return rotate(rotation_angle,
circular_sector (200, body_angle, yellow))

pacman_open = pacman(80)
pacman_closed = pacman(20)

Listing 14. Improving the abstraction of Listing 13: a Pac-Man can be drawn by speci-
fying a single parameter.

This example was discussed here to illustrate a non-trivial case of abstraction. A
simpler example, also based on graphical values, is presented in the chapter “From Re-
peated Expressions to Functions” of the textbook A Data-Centric Introduction to Com-
puting [92]. After programming concrete cases of simple triband flags (e.g., the Italian
and the French flags), learners can play this game of “similarities and differences” and
identify that the differences only lie in the colors of the three stripes, which should

60 5.5 Abstraction arises from similarities and differences

Figure 5.7. A filmstrip showing frames of Pac-Man with an increasingly open mouth.

become the three parameters of a generic function.

5.5.3 Functions can then be used to produce animation frames

An animation consists of a sequence of frames reproduced in rapid succession, fast
enough to give our eyes the illusion of movement. Frames in an animation constitute
an example of many graphics that are almost identical, except for a few differences. In
the previous section, we discussed how that motivates the need to introduce a function
to abstract over the differences.

Figure 5.7 plays once more with the Pac-Man sprite, showing it in six different
frames with its mouth progressively more open. The angle at which the mouth is open
is actually the only difference between the frames. We can use the pacman function
implemented in Listing 14 to generate each frame, placing the sprite on a squared
white background, aligned on the left.

The PyTamaro library offers a show_animation function to create and visualize
an animation from a 1ist of frames.

Initially, beginners can spell out the elements manually using a list literal (e.g.,
[frame(0), frame(20), ...1).

def frame(mouth_angle):
background = rectangle(400, 400, white)
return compose(pin(center_ left, pacman(mouth_angle)),

pin(center_left, background))

frames = [frame(angle) for angle in range(0, 180, 20)]
show_animation(frames)

Listing 15. Extending Listing 14 to show an animation of a Pac-Man opening its mouth.

Once learners are familiar with lists, teachers can also introduce the range function

61 5.6 PyTamaro can be used to create meaningful graphics

to generate a list of numbers® and then turn this list of numbers, representing the mouth
angles, into graphics. This transformation could be performed using a loop, the map
function, or a list comprehension as shown in Listing 15, depending on the teacher’s
intended learning goals.

The animated result of show_animation cannot be represented on a static page,
but the reader should imagine the frames of Figure 5.7 being reproduced in a rapid
sequence, in a loop, transmitting the illusion of movement.

5.6 PyTamaro can be used to create meaningful graphics

Teaching programming with PyTamaro does not need to be limited to flags or dry ge-
ometric shapes. Students can also create data visualizations that are meaningful to
them; they may then synergistically explore the insights from the visualizations to-
gether with interesting aspects in the programs that draw them.

Figure 5.8. “Warming stripes” created with PyTamaro.

As an example, learners can draw the famous “warming stripes” visualization of
temperature anomalies over time. Figure 5.8 shows an example created with PyTa-
maro, based on the data from the MeteoSwiss. There are several questions involved in
creating such a graphic; here we only explore an important one related to PyTamaro’s
design. One of the tasks is placing a sequence of colored rectangles side by side, a prob-
lem that occurs frequently. It is worthwhile to define a general function beside_many
to solve the problem once and add it to one’s “toolbox” (like square from Section 5.2).

Depending on the educational context, this function may be implemented using a
for loop as shown in Listing 16, recursion as shown in Listing 17, or the higher-order
reduce function, which is shown in Listing 18.

All the three versions correctly handle the corner cases where the list is empty or
contains just one graphic. The implementation is short and elegant, as it exploits the
possibility of creating an empty graphic with no area. Composing an empty graphic
with any other graphic simply results in the latter unmodified; this is no different from
adding O to any number. In algebra, this distinguished element is called an identity.

>The range function technically produces a “sequence”, an object of class range. One can iterate
over such an object, or turn it into a full-fledged list with 1ist.

62 5.6 PyTamaro can be used to create meaningful graphics

def beside_many(graphics: list[Graphic]) -> Graphic:
result = empty_graphic()
for graphic in graphics:
result = beside(result, graphic)
return result

Listing 16. An implementation of beside_many using a for loop.

def beside_many(graphics: list[Graphic]) -> Graphic:
if len(graphics) == 0:
return empty_graphic()
else:
return beside(graphics[0], beside_many(graphics[1:]))

Listing 17. An implementation of beside_many using recursion.

The set of all graphics, together with an identity and an associative binary function
for composition, forms a monoid. The monoidal flavor in PyTamaro has been explored
to an extreme in Yorgey’s powerful graphics library for Haskell [286]. That library
is aimed at experts and features sophisticated concepts such as envelopes and traces;
its extraordinary flexibility comes at the expense of ease for novices. We concur with
Yorgey that “library design should be driven by elegant underlying mathematical struc-
tures” [286]. PyTamaro’s design gives a taste of that elegance and power to novice
programmers.

Figure 5.9 shows more examples of different kinds of graphics that can be mean-
ingful to certain groups of learners. Creating a program to draw the periodic table of
elements can reinforce concepts learned in a different subject (e.g., chemistry). Pro-
gramming even the simple version depicted here requires thinking about the layout
of the elements in periods and groups, the sequential atomic number of each element,
and the coloring to distinguish between blocks. The pie chart that illustrates the break-
down of area per continent can be meaningful in the context of geography and/or data
visualization, whereas a culturally meaningful graphic such as the Swiss railway clock
represents a real-world object that may inspire learners, sustaining the engagement.

63 5.6 PyTamaro can be used to create meaningful graphics
1 2
H He
3 4 5 8 7 8 9 10
Li Be B C N O F Ne
" 12 13 14 15 16 17 18
Na Mg Al Si P S Cl Ar
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
K Ca Sc Ti V C Mn Fe Co N Cu 2Zn Ga Ge As Se Br Kr
a7 38 39 40 4 42 43 44 45 48 47 48 49 50 51 52 53 54
Ro 'St Y 2zZr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te | Xe

Figure 5.9. Three examples of meaningful graphics created with PyTamaro: the pe-
riodic table of chemical elements (top, first five periods only), a pie chart of area by
continent (bottom left), and the Swiss railway clock (bottom right).

64 5.7 PyTamaro programs only require a subset of Python, but are not limited to it

from functools import reduce
def beside_many(graphics: list[Graphic]) -> Graphic:
return reduce(beside, graphics, empty_graphic())

Listing 18. An implementation of beside_many using the higher-order function
reduce.

5.7 PyTamaro programs only require a subset of Python,
but are not limited to it

PyTamaro has been designed to avoid the pitfall of requiring many language features
(Section 4.3.1). The initial example program shown in Listing 7 only required an im-
port statement, assignment statements (to define constants), function calls, numeric
literals, and the use of constants.

It would be possible to explicitly define a subset of Python in the vein of what
Anderson et al. [11] did for JavaScript, who promised to apply the same process to
Python. This subset would clearly define all the language features necessary to write
programs with PyTamaro, including the definition of constants and functions as the
two fundamental forms of abstraction.

The explicit use of a sublanguage remains relatively niche within programming
education. Dedicated support from tools is necessary to exploit most of its benefits,
including tailored error messages and warnings when using a construct outside the
sublanguage (e.g., DrRacket’s support for language levels [88]). Most instructors im-
plicitly use sublanguages as they gradually explain new features of the language.

5.7.1 In asense, PyTamaro is “functional” programming

Except for the functions that perform output, all PyTamaro functions are pure. Func-
tions always produce immutable values. Behind the scenes, all PyTamaro graphics are
represented as an immutable scene graph.

The absence of side effects and mutation operations are defining characteristics
of “functional programming”. In the “functional” paradigm of programming, “pro-
grams consume and produce values, and programming is viewed as the arrangement
of functions to compose and decompose values (some have even dubbed functional
programming as ‘value-oriented programming’)” [155].

The PyTamaro program shown in Listing 7 could in all regards be considered an
example of “functional programming”, especially when contrasted to the other pro-
grams shown in Chapter 3. In Listing 7, assignment statements are effectively used to

65 5.7 PyTamaro programs only require a subset of Python, but are not limited to it

declare constants, there is no mutation, and the entire computation happens by calling
functions and composing the results.

5.7.2 But compartmentalizing programming into paradigms is mis-
guided

Traditionally, programming languages have been divided into “functional”, “imper-
ative”, “object-oriented”, or “logic” languages (and variations thereof: “procedural”,
“declarative”, and so on). The human desire for a clear taxonomy is understandable,
but is severely insufficient to characterize all the features each language actually sup-
ports. It is true that most programming languages are accompanied by a typical “style”
in which most programs are written, but at the same time, it is also possible (and it
is commonly done!) to mix and match different styles. Krishnamurthi [154] argues
for moving beyond rigid paradigms and thinking more about languages as the result of
an aggregation of features. This approach to languages as a combination of features is
explored in a textbook [153] and in research [44].

Many commonly used modern programming languages share a significant part of
the semantics that enables programming in multiple “paradigms”. In fact, we have al-
ready encountered a brief but significant example of this phenomenon when present-
ing three different implementations of beside_many in Listings 16 to 18. All three
programs are written in Python and require a mechanism to repeat computation. List-
ing 16 achieves this using a foxr loop: this style of writing programs is arguably typical
for Python, pervasive in education, and a signature of “imperative programming”. List-
ing 17 solves the problem with recursion: the approach is atypical for Python’s lists,
which are akin to vectors, but still leads to a correct implementation. Recursion is
often considered the epitome of “functional programming”, even though many “im-
perative” programs use recursion as well. Finally, Listing 18 uses a higher-order func-
tion, another signature of “functional programming”. However, Python programmers
frequently use list comprehensions, which are close cousins of another higher-order
function, map.

To complicate matters even further, even within the same program, it is common to
adopt different styles of programming. Programming courses for beginners in Python
often include a section that uses lists. A Python program, for example, may declare a list
numbers and use the instruction numbers += [1] to add a new element. Undoubt-
edly, this program uses mutable objects, one of the typical characteristics of “object-
oriented programming”. However, few teachers would claim that an otherwise pre-
dominantly “imperative” program is also following the “object-oriented” paradigm.

These simple examples should suffice to prove that it is unwise to claim that “teach-
ing in Python” means “teaching imperative programming”. Acknowledging this wide

66 5.8 The PyTamaro approach is not confined to an English APl in Python

variety of approaches, PyTamaro does not prescribe a specific “style” of programming
or a “paradigm” that teachers must follow at all costs.

At its core, PyTamaro strictly maintains its promise of not using mutation and of-
fering an API that does not expose objects. The teacher is ultimately responsible for
making choices for the rest of the program, considering the specific constraints and
goals of their context.

5.8 The PyTamaro approach is not confined to an English
API in Python

Ideally, a graphics library for introductory programming should be accessible to large
audiences. So far, we have described a library for beginners who program in Python
and are competent in English. These assumptions emphatically do not hold for all
beginners.

5.8.1 The design can be implemented in other programming languages

First, not all introductory programming courses use Python as a language. PyTamaro
was originally implemented in Python to serve the needs of our specific contexts: it was
first used as part of teacher training programs in Switzerland, and all those teachers
planned to use Python with their students. In Section 2.4, we discussed how Python is
currently the language of choice for many introductory programming courses.

The minimalism of PyTamaro’s design reduces the cost of porting the library to new
programming languages. Our research group developed JTamaro®, a Java library that
is a close cousin of PyTamaro and is used in a first-year university course. At its core,
JTamaro follows the exact same design as PyTamaro, offering static methods to create
and combine graphics.

5.8.2 PyTamaro is localized for natural languages

Second, students’ learning of programming should not be hampered by their native
language. Research has shown that the prevalence of English can be a barrier for non-
native speakers [104] given that students have to learn the programming language and
the foreign natural language at the same time. This is especially true now: students
around the world start programming at increasingly young ages and are not necessarily
comfortable reading and writing English.

®https://github.com/LuCEresearchlab/jtamaro

https://github.com/LuCEresearchlab/jtamaro

67 5.9 PyTamaro’s minimalism is only in service of learning

PyTamaro attends to this. The documentation of the library is available in multiple
languages, and the entire API is localized. For example, an Italian-speaking student
can make a triangle using the function triangolo, whose parameters, types, and
error messages are localized; a German-speaker can use dreieck. (Some examples of
using localized APIs are shown in Chapter 11, which reproduces excerpts from teaching
materials created by Swiss high school teachers.)

5.9 PyTamaro’s minimalism is only in service of learning

The minimalism of PyTamaro’s design is intended to sustain the engagement (Sec-
tion 4.2) and to keep the complexity of the programs low (Section 4.3). However,
some readers may find the example programs with PyTamaro presented so far in this
chapter not “minimal”, under some definition of minimalism.

Minimalism for its own sake is not among our goals. Below we discuss three senses
in which the programs presented so far are not minimal, and we argue why they are
nonetheless pedagogically justifiable.

5.9.1 Minimal does not mean only one primitive

PyTamaro includes only six functions to create primitive graphics: rectangle, triangle,
ellipse, circular_sector, text, and empty_graphic. The first four functions
cover basic geometric shapes and have been selected to enable learners to draw com-
mon graphics, such as the Pac-Man sprite shown in Figure 5.4.

These functions partially overlap: it is possible to produce the same graphic with
appropriate calls to two different functions. A circle, for example, can be produced
using the ellipse function specifying the width to be the same as the height, or
using the circular_sector function with an angle of 360 degrees. A hypothetical
elliptical_sector function would be a generalization that would cover all cases,
but explaining its behavior to learners would be more challenging.

Even more, a rectangle could be obtained by composing two triangles. Indeed, a
triangle function would be the only necessary primitive. Even text rendered with the
text function could be composed from tiny triangles: computer graphics approaches
use this as a tessellation technique, turning each polygon into a triangle.

Working exclusively with triangles would make it extremely challenging for novices
to program even simple graphics. Instead, PyTamaro’s pedagogical approach to teach-
ing programming favors giving students a few carefully chosen pieces to use as “build-
ing blocks”.

68 5.9 PyTamaro’s minimalism is only in service of learning

5.9.2 Minimal does not mean only one combinator

A similar argument applies to PyTamaro’s functions to combine graphics. Listing 7
shows a program with PyTamaro that draws a simple house, using the above combi-
nator to place the roof on top of the floor. Together with beside and overlay, these
three combinators allow learners to create many graphics without needing particular
forms of alignment.

Later on, students discover the need for more flexible alignment options, which are
achieved using the compose combinator with the pin function. The functions above,
beside, and overlay are special cases of a specific combination of compose and pin
to place graphics next to or on top of each other, aligning them at their center.

Listing 19 illustrates how the convenient above function can be “desugared” into
a combination of compose and pin. Strictly speaking, this implementation proves the
combinator above as superfluous, together with its siblings beside and overlay.
However, if PyTamaro did not include them, programming the simple house of Fig-
ure 3.1 would have as a prerequisite the explanation of pinning positions. Right at
the beginning, when a learner already needs to acquire numerous programming con-
cepts, we would also need to explain an intricacy that is only necessary in the graphics
domain. Here too, we carefully weighed the tradeoffs and favored a simpler learning
curve at the beginning over the minimalism of a single combinator.

def above(top_graphic, bottom_graphic):
return pin(center, compose(pin(bottom_center, top_graphic),
pin(top_center, bottom_graphic)))

Listing 19. Desugaring above into a combination of compose and pin.

5.9.3 Minimal does not mean as few characters as possible

Listing 7 includes on its first line a rather long import statement, which is necessary to
use two color constants and four functions from the PyTamaro library. Some program-
ming teachers with Python experience may protest: it is much easier to write from
pytamaro import x*!

A meaningful answer to this objection requires a better specification of what it
means for a program to be “easier”. If the metric is the number of characters (or the
number of lines of code), by all means a “star import” is the clear winner. If instead by
“easier” it is meant something along the lines of “a student can precisely understand
every part of the program”, the matter becomes more subtle.

69 5.10 The minimalism also brings limitations

Common introductory example programs, such as the one to determine whether a
number entered by the user is even or odd (Listing 1), often include built-in functions
that can be used without any import. Students can end up treating functions such as
input and print like “magic entities”, baked in the programming language. Often,
they are not perceived by novices as regular functions defined by a programmer and
part of the standard library. Requiring students to explicitly list the names they import
introduces a small inconvenience—which some code editors alleviate with automatic
completion mechanisms—but reduces the illusion that programs work “magically”.

5.10 The minimalism also brings limitations

The minimalism of the PyTamaro API introduces some limitations that we discuss here
explicitly.

5.10.1 Working with a bounding box can be limiting

A bounding box is the smallest, axis-aligned rectangle that fits the graphic. PyTamaro
allows pinning a graphic at nine points along its bounding box. Three points are offered
for each dimension: two at the extremes and one in the middle.

In addition, each primitive graphic has its pinning position at a specific point. This
usually coincides with one of the nine points determined by the bounding box, but
there are exceptions: triangles have their default pinning position on the centroid,
and graphics representing text are produced with their pin at the left end of the text
baseline.

This reduced set of “points of interest” still allows composing many graphics. For
example, triangles can be “stacked” on their centroid, and two rectangles can touch on
their edge to form a “staircase”. Other graphics, however, are much harder or impos-
sible to express with PyTamaro.

For instance, aligning a square and a circle so that their boundaries are tangent at
a 45-degree angle [286, Fig. 4] requires more sophisticated alignment features. Yorgey
[286] suggests the use of “envelopes” to find the correct position to place two graphics
beside each other along an arbitrary vector, instead of just the two axis-aligned ones.

Moreover, in PyTamaro, once a graphic is composed with another graphic it is only
possible to refer to the nine points on the bounding box of the resulting graphic. Py-
Tamaro does not provide a way to query the tree of graphics and refer to a point
that was accessible only in a sub-graphic. Sophisticated libraries such as Haskell’s
diagrams [286] enable users to attach mnemonic names to certain locations, and
to later perform queries on composed graphics using those names. This adds more

70 5.10 The minimalism also brings limitations

flexibility, but also introduces a new set of design questions. Different graphics can
contain points with the same name and then be combined, or the same graphic with
a named point can be included multiple times in a composition. This introduces the
need for a mechanism to disambiguate between these cases.

Overall, PyTamaro is not intended to become a full-fledged graphics library for
drawing arbitrarily complex graphics. Given that the presented set of alignment fea-
tures already enables students to draw a broad class of graphics, we decided against in-
troducing these advanced features, remaining faithful to PyTamaro’s pedagogical goals.

5.10.2 A local coordinate system can be reintroduced

Although a local coordinate system can be misused by students (Section 4.1.3), graph-
ics may be inherently specified with some parts at precise coordinates. This is fre-
quently the case for graphics that reproduce a physical or virtual 2D world.

In these cases, the graphic should first be decomposed to identify the most specific
part that requires a local coordinate system. The remainder of the graphic can be
composed as usual. For the part that requires placing a graphic onto another graphic
that acts as a background, one can use a transparent rectangle, sized to match the
coordinates, to create a larger graphic that can be appropriately pinned and composed
with the background.

When teaching with graphics that use a coordinate system, such as with one of
the common libraries that implement a global coordinate system (Section 3.3), under-
standing where the origin of the coordinate system is located is one of the first steps
necessary to draw even the simplest graphics. Students are typically acquainted with
coordinates from mathematics at school, where the focus is on the upper-right quad-
rant of a Cartesian plane. The origin is located in the bottom left corner, with “y”
coordinates that grow when going upwards. On the contrary, most libraries adopt the
so-called “computer graphics” coordinates, where the origin is located in the upper left
corner and “y” coordinates grow going downwards.

Given that PyTamaro does not offer a local coordinate system, its implementation
by a student or a teacher needs to explicitly decide between one of the two systems.
Listing 20 shows an example of a generic function that uses PyTamaro to place a fore-
ground graphic onto a background graphic at specific coordinates. Depending on the
fifth parameter, it uses either the “mathematics” coordinates or the “computer graph-
ics” ones. One can then define specialized functions, like place_at_maths_coords
and place_at_graphics_coords, to work within the desired system.

Figure 5.10 shows the result of placing a small red dot onto a background scene at
specific coordinates. The two graphics have been altered to indicate the transparent
rectangle as a partially transparent white rectangle. When using an actual transparent

71 5.11 The PyTamaro approach goes beyond the design of a library

def place_at_coordinates(foreground: Graphic,
background: Graphic,
x: float, y: float,
is_math: bool) -> Graphic:
offset = rectangle(x, y, transparent)
foreground offset = compose(foreground,
pin(top_right if is_math else bottom_right, offset))
origin = bottom_left if is_math else top_left
return compose(pin(origin, foreground_offset),
pin(origin, background))

def place_at_maths_coords(foreground, background, x, y):
return place_at_coordinates(foreground, background, x, vy,
—~ True)

def place_at_graphics_coords(foreground, background, x, y):
return place_at_coordinates(foreground, background, x, vy,
—~ False)

Listing 20. Two functions which use PyTamaro to place a graphic at specific coordi-
nates, using either the “mathematical” or the “computer graphics” coordinate system.

rectangle, a graphic can be placed at specific coordinates without altering the back-
ground scene.

The possibility of reintroducing a local coordinate system is both a strength and
a limitation for PyTamaro. On one hand, an entire class of graphics, such as a blue
sky with stars at specific coordinates, can still be drawn within this approach. On
the other hand, once the possibility is revealed, students may begin to overuse it or
apply it inappropriately to position graphics arbitrarily. This was the pitfall described
in Section 4.1.3, which we strove to eschew.

5.11 The PyTamaro approach goes beyond the design of
a library

This chapter presented the design of PyTamaro and offered some examples of how it
can be used to teach programming. The following chapters complement the design of
the library with a pedagogy and software systems that build on PyTamaro’s strengths,

72 5.11 The PyTamaro approach goes beyond the design of a library

(a) “Computer graphics” coordinates. (b) “Mathematics” coordinates.

Figure 5.10. A red dot placed at coordinates (120, 40) onto a gray background.

focusing on teaching programming to complete beginners, emphasizing abstraction
and problem decomposition.

Chapter 6

With TamaroCards, Programming Can
Be Introduced Unplugged

After introducing a Python library, we now present an approach for teaching introduc-
tory programming using PyTamaro without starting with writing Python code, answer-
ing the question:

RQ How can the PyTamaro approach be taught initially without computers, eventu-
ally transitioning to a text-based programming language?

This chapter discusses an unplugged approach we dubbed TamaroCards, showing how
it supports abstraction and problem decomposition as our focus when learning to pro-
gram. It presents a systematic process to transition from unplugged activities to correct
Python programs. A brief description of a curriculum used in middle school concludes
the chapter as a concrete example of TamaroCards usage.

6.1 Programming can be initially taught unplugged

Despite the most popular name with which the field is known, Computer Science is
not only about computers. The Computer Science Unplugged project [22] consists of a
series of activities aimed at teaching important ideas in Computer Science without the
requirement to use a computer. Since then, the original set of activities of 1998 has
been evolving and has also been complemented by independent but related educational
projects. Nishida et al. [191] attempt to characterize the commonalities among the
many different activities: they do not involve computers at all, they are generally based
around a game or challenge and possibly include a story, they are kinesthetic (they use
physical objects), they involve students directly, and they are easy and inexpensive to
set up.

73

74 6.2 Unplugged programming is related to tangible notional machines

Unplugged activities have become popular and they are now commonly recom-
mended in teacher training materials. Bell and Vahrenhold [21] however note that
relatively few studies have empirically demonstrated their effectiveness.

In some cases, the requirement of not using computers in unplugged activities is
interpreted as an absence of programming (e.g., [21]). This characterization, however,
refers to a narrow view of programming as an activity in which a program is encoded
in a programming language—often, a textual programming language—and is then
executed by the computer.

Alamer et al. [7] present a set of activities, collectively named “Programming Un-
plugged”, used to teach key programming concepts with positive preliminary results.
Hermans and Aivaloglou [119] describe a study in which one of the two groups worked
on unplugged activities that covered a few programming concepts before programming
in Scratch.

Pedagogies that include unplugged programming activities normally use them as a
starting point, before students move on to a “plugged” version of programming [187].
This form of sequencing appears to yield better outcomes [187]. Key elements for
the success of these activities seem to involve adequate semantic profiles (unplugged
activities start from a “low density” [176]), working within the zone of proximal de-
velopment [270], and an explicit “notional machine” [86].

6.2 Unplugged programming is related to tangible notional
machines

The term “notional machine” was introduced by Du Boulay in an influential paper that
argued how students need to learn “the general properties of the machine that one
is learning to control” [77]. The somewhat broad definition and the centrality of the
issue led to the term being adopted to refer to many related but distinct concepts in
computing education research. As Duran et al. points out: “In practice, we have often
found it difficult to guess at what colleagues and authors precisely mean when they
say or write ‘notional machine™ [78].

The perspective adopted in this thesis matches the characterization recently pro-
posed by an international working group: “A notional machine is a pedagogic device to
assist the understanding of some aspect of programs or programming” [86]. Fincher
et al. [86] collected 43 notional machines used by educators in their teaching practice.
Notional machines are categorized according to whether they establish an analogy,
such as a variable as a parking space, or they are representations, such as a visual rep-
resentation of the memory stack of a running program. Representations can be drawn
manually or automatically generated by a machine.

75 6.3 TamaroCards is a notional machine for PyTamaro expressions

Some notional machines are primarily based on or include physical manipulatives.
For example, students may use clothespins to hold onto a (paper) value, learning that
a variable can only hold one value at a time. As an example of a more advanced topic, a
linked list can be made tangible by representing each node and references with a piece
of paper. Students can move the paper to illustrate, for example, a reference “moving”
over the nodes during a list traversal. Notional machines that belong to this group can
be classified as tangible notional machines.

Embodied cognition posits that cognitive processes are rooted in the interactions of
the body with the world [279]. More specifically, one of the claims that has found some
empirical support is that “We off-load cognitive work onto the environment. Because
of limits on our information-processing abilities (e.g., limits on attention and working
memory), we exploit the environment to reduce the cognitive workload. We make the
environment hold or even manipulate information for us, and we harvest that informa-
tion only on a need-to-know basis.” (ibid.). This perspective may justify the potential
value of tangible notional machines, which serve us as an external representation that
we manipulate with our bodies.

6.3 TamaroCards is a notional machine for PyTamaro ex-
pressions

One of PyTamaro’s explicit goals is to minimize the number of language constructs
needed at the very beginning to create the first graphics. Indeed, after suitable imports,
the program shown in Listing 7 to draw a house with PyTamaro only requires using
constants, functions, and numeric literals.

However, these three concepts also need to be gradually understood by students,
who may only vaguely recognize the concept of a function from mathematics. Even the
mere act of typing such a program in an editor can be a problem.

Deviations from the correct syntax of the programming language result in the
computer refusing to execute the program. Syntactic errors are often easier to over-
come than semantic ones, but cause significant frustration for beginners. Drosos et al.
[76] analyzed the sentiment and the Python code written by learners, revealing how
SyntaxError was the strongest correlating feature with frustration. (The same study
also noted that global variables, a seemingly convenient but complex feature of Python,
are also a frequent source of frustration.)

Listing 21 is a variant of Listing 7, without the introduction of names, the import
statement, and the instruction to output the graphic on the computer. This program
simply consists of a single expression that composes graphics to create a house.

76 6.3 TamaroCards is a notional machine for PyTamaro expressions

above (
triangle(100, 100, 60, red),
rectangle (100, 100, yellow)

Listing 21. A single expression to create a house with PyTamaro.

Computing education research has proposed strategies to teach students a viable
computational model to work with expressions.

Schanzer proposed to use “Circles of Evaluation”, a notional machine that repre-
sents each expression as a circle, and the nesting of expression as nesting of circles [234,
Fig. 15]. In his work, he also showed an example of using “Circles of Evaluation” for
an expression that produces an image [234, Fig. 16]. The notional machine, referred
to as a “visual-spatial metaphor”, is supposed to “dramatically accelerate the speed at
which students pick up the Racket programming language, and eliminate many of the
most common syntax errors” [234].

Hauswirth used a related notional machine, called “Expression as Tree” [86, Fig. 28],
to bring out the explicit structure of an expression as a tree. Each expression is repre-
sented as a node, which may contain “holes” as placeholders for arbitrary subexpres-
sions. Subexpressions are represented as nodes connected with an edge to the parent
node. Bevilacqua et al. [26] studied the use of this notional machine in exams by an-
alyzing “Expression as Tree” diagrams hand-drawn by students. A question based on
the notional machine captures several mistakes, some of which can be explained by
already documented misconceptions or suggest new ones [26].

6.3.1 TamaroCards uses physical cards to represent programming con-
structs

To learn the first programming concepts with PyTamaro without the burden of Python’s
syntax, we developed the TamaroCards notional machine. The first version was created
for a summer workshop dedicated to teachers who were considering the adoption of
PyTamaro.

TamaroCards is a tangible notional machine, to be used unplugged. Each construct
in the programming language corresponds to a physical card. Figure 6.1 shows an ex-
ample of three cards. The literal 250 is simply written on a piece of white paper. Con-
stants are represented with rectangular blue cards, such as PyTamaro’s red constant
for the red color. Red cards with the shape of a rounded rectangle represent functions,
such as PyTamaro’s rectangle function to create a rectangle given its width, height,

77 6.3 TamaroCards is a notional machine for PyTamaro expressions

and color.

kv

i
250
rot rettangolo
rosso -
l
Literal Constant Function
250 red rectangle(,o,0)

Figure 6.1. Example of three cards in the TamaroCards notional machine.

Constant cards have an arrow on the right, to signal that they stand for a value when
used. Function cards have as many arrows on the left as the number of parameters of
the function they are representing, and an arrow on the right to indicate that a value
is produced when the function is used.

The name of each constant and function card is shown in bold in the center. As
explained in Section 5.8.2, the PyTamaro API is available in multiple different natural
languages. Cards feature the name in the English API in bold, reflecting its prevalence,
but also include the name in German and Italian, the two next most commonly used
languages.

Even though the notional machine has not been fully formalized, this explicit cor-
respondence between the elements of the notional machine and the elements of the
programming language aims to avoid an unsound mapping between the two [185].

6.3.2 TamaroCards can be seen as a visual programming language

We introduced TamaroCards as a notional machine, but TamaroCards can also be seen
as a visual programming language for a small language without control-flow and mu-
table state. The emphasis is on the propagation of values, which correspond to the
composition of graphics in PyTamaro. In a sense, thus, TamaroCards is a data-flow
language [137].

Following the composition approach adopted by PyTamaro, this data-flow visual
programming language for novices contrasts with common educational visual program-
ming languages like Scratch [221], which are based on a block paradigm that focuses
on “imperative”, structured programming.

78 6.3 TamaroCards is a notional machine for PyTamaro expressions

6.3.3 The house example can be created with TamaroCards

The physical cards are distributed to students at the beginning of an activity. At the
very beginning, it is possible to distribute only a subset of all the cards representing the
PyTamaro API (e.g., avoiding the more flexible combinator compose).

Students work on a table using a drawing surface, such as a sheet of brown paper.
To create a graphic, they choose the cards they need and arrange them on the table.
With a pencil, students draw lines to establish connections between cards.

Figure 6.2 shows the cards connected together to compose the house. The phys-
ical nature of the cards allows them to be rearranged easily, thus enabling multiple
strategies to solve problems. In a “bottom-up” approach, a student could recognize the
roof, grab the necessary triangle card, and start composing the house from there.
Alternatively, using a “top-down” approach, a student could start by realizing that the
house is made of two pieces one above the other, and start by placing the above card
on their table.

S
| triangle

dreieck F—
triangolo

rosso

Y
100 rectangle
rechteck
100 rettangolo
=]

yellow

gelb >/—.

giallo

Figure 6.2. Using TamaroCards to compose a house with PyTamaro.

Once the expression is composed, students can evaluate it. The evaluation of a
TamaroCards expression needs to start from the leaves. Students can reach the leaves
by checking if a card has further connections on its left. The evaluation proceeds from
the left to the right. The emphasis is placed on the composition of graphics, which can
be drawn by the students on their table using colored pencils, or composed physically
using colored paper cut-outs.

79 6.3 TamaroCards is a notional machine for PyTamaro expressions

Figure 6.3 shows the result of evaluating the TamaroCards expression of Figure 6.2.
The final graphic is shown next to the root of the expression (above, in this case).
Visualizing the intermediate values of the computation can be helpful to find issues,
provided that the evaluation is carefully done step-by-step.

/ b \
—| triangle

dreieck F—
triangolo

rosso

i

100 rectangle

rechteck

100 rettangolo
- !

yellow >/_'

gelb
giallo

—

Figure 6.3. Evaluating the graphics of a TamaroCards expression.

Evaluating a TamaroCards expression with an unknown result can also be a fun
and instructive activity for pairs or groups of students. Figure 6.4 shows a photograph
taken during a summer workshop: students receive a TamaroCards expression without
being told what it produces, and they need to evaluate it to determine that it is the
composition of a heart.

6.3.4 Cards also serve as documentation

The careful evaluation of a program in TamaroCards requires avoiding second-guessing
what is the behavior of each card. In the example of Figure 6.3, it would be uncommon
for students to connect the triangle card to the second incoming arrow of the above
card, and viceversa for the rectangle card, effectively swapping the arguments to
the above function. Even so, their intention is to create a house with a roof above the
floor, and the final house may still be drawn correctly.

When programming, a teacher would normally correct their student or direct them
to the documentation of the API they are using. For this unplugged activity, an anno-

80 6.3 TamaroCards is a notional machine for PyTamaro expressions

Figure 6.4. Photograph of an evaluated TamaroCards expression taken during a sum-
mer workshop.

i

i

beside
neben
accanto

overlay
ueberlagere
sovrapponi

m |o

Figure 6.5. Documentation version of TamaroCards for three functions to combine
graphics.

tated version of the cards plays the role of documentation. The first card on the left of
Figure 6.5 shows a simplified form of documentation for the above function. Unlike
code cards, which are used to compose the expressions, documentation cards feature an-
notations on the arrows corresponding to the arguments and the arrow for the return
value, illustrating an example of usage of the function card.

Documentation cards do not fully specify the behavior of a function, which is usu-
ally introduced orally by the teacher. Their purpose is to remind students of the correct
behavior, such as the order in which arguments need to be specified. Students can visu-
ally see that above produces a graphic with the first graphic placed above the second
graphic, and—perhaps less obviously—that overlay places the first graphic in the
foreground and the second graphic in the background (third card of Figure 6.5).

The annotations featured on the documentation cards are not included in the code

81 6.4 Students follow a systematic process from cards to code

cards, because they feature concrete graphics that differ from the actual graphics used
in the TamaroCards expression created by the student. Using annotated cards also to
compose graphics would likely confuse learners.

6.4 Students follow a systematic process from cards to
code

Starting with unplugged activities based on TamaroCards is intended to be a stepping
stone for learners, who eventually need to transition to using Python and have a com-
puter execute their programs. How can a student who successfully created a house
using TamaroCards (Figure 6.2) write a syntactically correct Python expression?

Given the direct correspondence between cards in TamaroCards and constructs
in the Python programming language, we can teach a small set of rules to express a
TamaroCards expression as Python source code.

The process begins by identifying the root of the expression: the card without any
outgoing connection. We need to deal with three types of cards:

* Literal cards are simply (literally!) written as they are. When a literal card shows
the number 100, it is also written as ‘100’ in Python code.

* Constant cards are represented by their name, written in the center of the card.
A constant card representing PyTamaro’s red color is written as ‘red’ in Python
code.

* Function cards also start in Python with their name (e.g., ‘above’), followed by
an open parenthesis ‘(’, the representation of any card connected to the incoming
arrows separated by a comma *,’, and a closed parenthesis ¢)’. To express each
card connected on the left, repeat the same process again.

Figure 6.6 shows an instance of the process applied to the TamaroCards expression
previously shown in Figure 6.2. This expression is non-trivial to represent in Python,
as it already has three different levels of depth. Students can follow a mechanical,
systematic process that guarantees that they will always end up with a syntactically
correct Python expression, provided that they follow the process diligently.

For illustrative purposes, Figure 6.6 shows each Python token superimposed on the
cards. In practice, students would type in Python code directly in an editor on their
computer or write it on a separate piece of paper. To avoid losing track of the point of
the process completed so far, students can incrementally draw a “path” (sequence of
blue arrows in Figure 6.6) over their TamaroCards expression.

82 6.5 TamaroCards can also help with misconceptions

triangle

1% L=

500 |

(1o

60

-
red

rosso

)
= W
10&2 rectangle
" rettangolo
[—
2 |
yellow -) l '

giallo

Figure 6.6. Systematic process to turn the TamaroCards expression to create a house
into a Python expression.

Students get acquainted with the process at the very beginning and use it systemat-
ically. This helps to reduce the frustration around syntactic errors, which are frequent
among beginners. Over time, expressions become bigger and the process becomes su-
perfluous. Still, teachers can remind their students to apply the process whenever they
incur in a SyntaxError.

6.5 TamaroCards can also help with misconceptions

Teaching students to use TamaroCards and systematically translate TamaroCards ex-
pressions to Python code can also be helpful to prevent or overcome known program-
ming misconceptions. We briefly discuss three example cases, considering the miscon-
ceptions from the progmiscon. org inventory [52].

Each expression in TamaroCards is represented with a physical card, including con-
stants and literals. This counters the widespread [48, Tab. 2] NOATOMICEXPRESSION
misconception: the belief that “expressions must consist of more than one piece” and
thus atomic pieces need to be treated differently than “regular”, non-atomic expres-
sions.

https://progmiscon.org/misconceptions/Python/NoAtomicExpression/

progmiscon.org
https://progmiscon.org/misconceptions/Python/NoAtomicExpression/

83 6.6 Teaching abstraction already starts with TamaroCards

The evaluation of a TamaroCards expression proceeds from the leaves to the root.
This explicitly combats the OuTsIDEINFUNCTIONNESTING misconception (“Nested func-
tion calls are invoked outside in”?).

Finally, the systematic process to translate a function card in TamaroCards to Python
code addresses the misconception PARENTHESESONLYIFARGUMENT", which causes stu-
dents to omit parentheses when a function has no arguments. This misconception is
considered very prevalent by high school teachers [48, Tab. 3].

6.6 Teaching abstraction already starts with TamaroCards

Students need to use a significant number of cards to create even moderately elabo-
rate graphics. When an expression becomes large, representing it with TamaroCards
becomes unwieldy. This is no different than with a textual programming language.

In Section 5.5, we discussed how more complex graphics can contain parts that are
identical or very similar except for a few differences. In those cases, abstraction helps
to reduce the complexity and work with fewer “pieces”.

Physical cards make the pain of not using adequate abstractions very tangible.
Cards cannot be “copied” easily: if a graphic contains a sub-graphic twice, all the cards
required to draw the sub-graphic need to be arranged twice on the table, and also
connected twice.

In such a painful situation, the learners demand “a better way to do it”. This is the
first condition for conceptual change (in its more radical form, accommodation), as the-
orized by Posner et al.: “there must be dissatisfaction with existing conceptions” [215].

TamaroCards attends to this and offers two mechanisms of abstraction. Special care
is taken so that they also fulfill the remaining three conditions suggested by Posner et
al. [215]: the new abstraction mechanisms need to be intelligible for students, appear
plausible from the beginning to solve the problem with the existing way they solve
problems, and seem fruitful in enabling students to solve a new class of problems.

The card in Figure 6.7a can be used by a student to define their own constants.
Students write the name of the constant in the triangle at the top, before the =. This
triangle acts as a “roof” that houses an entire TamaroCards expression, which should
be placed immediately below it. Once defined, the card shown in Figure 6.7b can be
filled with the name of the constant and normally used to compose other TamaroCards
expressions.

Deliberately, the cards for using the constants defined in the PyTamaro library or
by the user look alike: they differ only for the PyTamaro logo, present in the former

*https://progmiscon.org/misconceptions/Python/OutsideInFunctionNesting/
*https://progmiscon.org/misconceptions/Python/ParenthesesOnlyIfArgument/

https://progmiscon.org/misconceptions/Python/OutsideInFunctionNesting/
https://progmiscon.org/misconceptions/Python/ParenthesesOnlyIfArgument/

84 6.7 We piloted a curriculum in a middle school using TamaroCards

and absent in the latter. This helps students realize that the constants they define can
be used in the exact same way as the constants defined in a third-party library.

(a) Definition. (b) Use.

Figure 6.7. Empty cards to define and use a student-created constant.

Functions adopt the same idea. The card in Figure 6.8a defines a function. It is
recognizable by the red color with rounded borders and the keyword def at the top,
helping to bridge to Python’s syntax for defining functions. Once defined, functions
can be used by supplying the intended arguments to the card of Figure 6.8b.

def

(a) Definition. (b) Use of a two-parameter function.

Figure 6.8. Empty cards to define and use a student-created function.

Combined, these features in TamaroCards enable teachers to focus on abstraction
even before using the computer.

6.7 We piloted a curriculum in a middle school using Tamaro-
Cards

The effectiveness of TamaroCards has not yet been empirically evaluated, but their
suitability to be part of an introductory programming course has already been tested
in practice.

In close collaboration with a middle school teacher, we developed a curriculum for
an elective course on programming. The target audience for this curriculum is 9th
graders in Tessin, an Italian-speaking canton in the south of Switzerland.

The curriculum introduces programming with PyTamaro and makes extensive use
of TamaroCards®. The curriculum consists of a sequence of units.

“An English translation of the booklets forming the curriculum is available at https://luce.si.
usi.ch/composing-python/.

https://luce.si.usi.ch/composing-python/
https://luce.si.usi.ch/composing-python/

85 6.7 We piloted a curriculum in a middle school using TamaroCards

The first unit introduces what it means to program, what is a programming lan-
guage, and what are its characteristics compared to a natural language.

The second unit discusses problem decomposition using graphics as a domain. Stu-
dents decompose both elementary and more complex graphics, such as a screenshot of
an app on their smartphone, to recognize the elementary graphics.

The third unit focuses on unplugged programming. Students use the cards from
TamaroCards to compose simple graphics, such as our recurring example of a house,
the Swiss flag, or a pair of eyes. The lessons also teach a form of program tracing: how
to interpret a TamaroCards expression to determine the resulting graphic. Figure 6.9
shows an excerpt from the student workbook for this third unit. Students use Tamaro-
Cards to build the necessary parts to create the house. In the middle of Figure 6.9,
there are cards in their documentation variant.

Programma un tetto triangolare rosso

1. Taglia con le forbici: Libreri 2. Crea il programma
con le cards:

.

dreieck
triangolo

Figure 6.9. Excerpt from the workbook asking students to use TamaroCards to create
the roof of a house. Translation: “Program a red, triangular roof”, “1. Cut with your

"o

scissors”, “Library”, “2. Create the program with the cards”.

In the fourth unit, students learn the process necessary to go from cards to code
(Section 6.4) and start programming in Python. Activities include first an unplugged
part to program with the cards and then the corresponding “plugged” part using the
computer. The translation process from cards to code is first exercised with one in-
dividual shape, before advancing to the more elaborate house example of Figure 6.6.
Figure 6.10 shows an excerpt from the workbook that illustrates how to turn a sin-
gle card into Python code, and then asks students to apply the process on a different
example, explicitly recommending drawing the “path” (Figure 6.6).

The execution of Python programs with the PyTamaro library occurs in a web envi-
ronment which will be described in the next chapter (Chapter 7). We created dedicated
activities for this middle school curriculum so that students can take their first steps

86 6.7 We piloted a curriculum in a middle school using TamaroCards

gelb
giallo

Traduci il seguente programma nel codice Python e disegna la strada:

Programma con le cards Programma in Python

200
-
triangle
dreieck
triangolo

L

vellow
gelb
giallo

Figure 6.10. Excerpt from the workbook asking students to translate a TamaroCards
expression to Python code. Translation: “Translate the following program into Python
code and draw the path”, “Program with the cards”, “Program in Python”.

just by focusing on one single expression (initially not worrying about the import or
the output).

The curriculum continues with a unit on colors and one on more advanced forms
of composition with pin and compose. Next, a unit motivates and explains the need
to define our own functions to abstract. Figure 6.11 shows an activity from the student
workbook that paves the way to functions. Students recognize that two TamaroCards
expressions, which are used to create the green and red lights for a traffic light, only
differ for the color of the light.

Figure 6.12 shows the definition of a suitable function to create lights of arbitrary
colors using TamaroCards. Special emphasis is placed on choosing a suitable name
for the parameter. Once the function has been defined, it can be used as shown on
the left of Figure 6.13. A TamaroCards expression that evaluates to a color, such as
the red constant, can be used as an argument to produce a red light. On the right of
Figure 6.13, students are then invited to use the same function to produce a light of a
different color.

The final part of the curriculum first introduces lists, which are initially spelled out

87 6.7 We piloted a curriculum in a middle school using TamaroCards

def def
red_Llight @n_ught
-

'Y

ellipse
ellipse
ellisse

ellipse
ellipse
ellisse

e e

overlay
ueberlagere
sovrapponi

overlay
ueberlagere
sovrapponi

rectangle
rechteck —
rettangolo

rectangle
rechteck [—
rettangolo

I

black
schwarz schwarz

nero
)

J

Figure 6.11. Excerpt from the workbook asking students to identify the differences
between two similar but not identical constant definitions.

manually with list literals, then presents the range function to automatically produce
lists of numbers, and finally uses the map function to transform those numbers into
graphics. Throughout the course, the concepts are practiced with several examples.
The course culminates with a project, allowing students to program their own graphic
of choice.

This curriculum was piloted in an elective course in a middle school and covered
the entire school year 2024/2025. It should not be intended as the reference PyTamaro
curriculum, but more as one of the possible ways in which PyTamaro can be used with
relatively young students. The teacher in charge of the classes anecdotally reports that
her students liked the approach.

The curriculum relies heavily on TamaroCards. The middle school teacher, whose
primary subject is mathematics, is very fond of the idea of having students work un-
plugged before transitioning to the computer. However, she laments that working com-
pletely unplugged for the first weeks of the course was a challenge for her students, who
were eager to use computers. The experience of working with the cards felt inauthentic
for some. The problem became less drastic over time, as students could mix unplugged
and plugged activities. Even later on in the course, she encouraged students to resort
to reasoning with the cards when they struggled with Python’s syntax. Overall, she
considers the benefits of using TamaroCards more important than the drawbacks, and
plans to keep using the cards in the next editions of the course.

88 6.7 We piloted a curriculum in a middle school using TamaroCards

def
luce

=
ellipse

ellipse

ellisse

colore_luce IM

i

overlay
ueberlagere
sovrapponi

parametro

100 rectangle
rechteck
100 rettangolo
* !
black
schwarz \—/

nero

J

Figure 6.12. Excerpt from the workbook showing students how to define a function
with a parameter named 1ight_color.

Produce la luce rossa Produce la luce verde
Chiamata di funzione 1luce, con il Chiamata di funzione 1luce, con il
colore rosso come argomento: colore verde come argomento:

= Al luce |— .

argomento

Figure 6.13. Excerpt from the workbook showing students how to use the function

defined in Figure 6.12 and asking them to use it again with the color green as an
argument.

Chapter 7

PyTamaro Web Offers Programming
Activities with PyTamaro

Teachers need inspiration for programming activities that they could offer with PyTa-
maro. Moreover, schools are increasingly adopting a “Bring Your Own Device” policy:
students come with an assortment of different devices and operating systems. Using
a traditional IDE on a tablet is impractical or impossible. A properly designed web
platform has the potential to address both problems.

RQ How can a web platform be designed to offer PyTamaro activities and enable
students working on them directly from their browser?

This chapter describes PyTamaro Web, a publicly available web-based Python program-
ming environment, currently hosted at https://pytamaro.si.usi.ch. The plat-
form offers programming activities based on PyTamaro, building on its strengths.

7.1 The platform was created to show example activities
to teachers

The first version of the graphics library that later became known as PyTamaro was
developed to support the teaching of programming to teachers in Tessin. We developed
a number of exercises specifically to serve as assignments for courses in informatics
didactics.

Some teachers in other cantons, who attended a different but related training pro-
gram to qualify for teaching informatics, also completed a few of those exercises.

The initial motivation for developing the web platform was thus collecting and
making publicly available this first set of exercises used with teachers, to serve as an

89

https://pytamaro.si.usi.ch

90 7.2 The computational model is based on notebooks, with key differences

inspiration for activities that teachers could pilot with their students. A page on the
platform features a gallery of activities as shown in Figure 7.1, where each activity is
represented with the graphic students are asked to program. (The tags that appear
under the title of each activity in Figure 7.1 have been added later. They characterize
which programming concepts and which graphics concepts are involved in the activity.)

v e+

Color Flower & Yin Yang & Four Petal Flower & Swiss Flag &
{Fonv?rehen?ion? (color Model) (Iist/\ Qambax) (Function Definition) P \:Toolbox) (Function Definition) ° (asic Composition) o
(toop) (@) (Function Definition) [] (Basic composition) (Basic composition)
(‘Basic Composition)

Tulip @ Barcode % Clover @ Margritli @

(color Model) (Function Definition) (tist) (conditional) (Loop) (conditional)) (Pin’) (Function Definition) (toop) (Pin) (Function Definition)

b = p .) -
(Basic Composition) (Function befnition) (Basic Composition) (Basic Composition) (Basic Composition)

Figure 7.1. A gallery of activities in PyTamaro Web.

Over time, we gradually added more and more programming activities to the plat-
form, with activities at different levels of difficulty and covering a variety of topics.

Additionally, the web platform offers a “Playground” page that can be used as a
simple IDE for Python, ready to execute programs that use PyTamaro.

7.2 The computational model is based on notebooks, with
key differences
An activity on the PyTamaro Web platform is a guided learning experience. Textual

explanations are interleaved with “code cells”: regions of the page that offer a code
editor in which students can write and execute programs.

91 7.2 The computational model is based on notebooks, with key differences

This structure is inspired by computational notebooks such as Jupyter [143]. The
notebook interface was first popular among mathematicians, and is now used across
many fields, including scientific computing, machine learning, and education. Since
the beginning, notebooks offered the possibility of combining rich-text explanations
with code and its result.

In fact, activities for PyTamaro Web are created and stored in the format of Jupyter
notebooks [143]. Many environments, including Visual Studio Code [267], include
capabilities to work with Jupyter notebook files.

As mentioned, Jupyter notebooks are commonly used in education: their versatil-
ity enables them to be used as an interactive lesson led by a teacher, as an independent
lesson followed autonomously by a student, or even for assignments [135]. Johnson,
however, warns of a number of pitfalls derived from his observations with students
using Jupyter notebooks (ibid.). Two of them appear significant: the presence of hid-
den state due to out-of-order execution, and impediments to following fundamental
principles of code organization, such as modularization. Here we discuss the former;
Chapter 8 will deal with the latter aspect.

Code cells in a Jupyter notebook appear as a linear sequence. However, cells can
be run and rerun in arbitrary order. This out-of-order execution is known to be a pain
point even for moderately experienced users, as it can produce unexpected, puzzling
results [45]. An analysis of public notebooks on GitHub revealed that nearly half of
them include code cells executed in a different order than listed [225].

Static analysis techniques such as dataflow analysis could detect when code cells
need to be rerun, but the problem is intractable in general when using a full-fledged
programming language such as Python, where complex mutations are customary. Phipps-
Costin et al. [208] suggest instead a simple solution for educational purposes: every
time a code cell needs to be executed, all code cells from the beginning are executed
sequentially. This may be an unacceptable cost in some contexts, but it is usually rea-
sonable for educational purposes, since it leads to a simple computational model.

from pytamaro import rectangle, red, show_graphic

red_square = rectangle(64, 64, red)
show_graphic(red_square)

Stale output: re-run the code to refresh it

Figure 7.2. Indication of stale output on a code cell in PyTamaro Web.

92 7.3 Activities can leverage dedicated features to help learners

When the code in a cell is modified after having executed it, the PyTamaro Web
platform indicates that the output may no longer reflect the current code and is thus
stale. Figure 7.2 shows the former output of a cell, a red rectangle, which becomes par-
tially opaque after the code cell has been edited. A red badge warns that the output is
stale. Re-executing the code cell refreshes the output by updating it. In Repartee [208],
the same situation is indicated with a dashed border that surrounds the stale output.

If other code cells after the one that was edited have already been executed, all
their outputs become stale as well, reflecting the linearity of the computational model.

7.3 Activities can leverage dedicated features to help learn-
ers

As mentioned above, an activity for the PyTamaro Web platform consists of a Jupyter
notebook file. An additional JSON file contains metadata about the activity (e.g., the
concept tags of Figure 7.1).

The Jupyter format interleaves code cells with explanations, which are written in
Markdown. In addition to the usual formatting of Markdown documents, the platform
also supports custom components using MDX, a superset of Markdown. These custom
components are designed to enhance the learning experience.

Some components implement general pedagogical ideas. The Task component, for
example, highlights the instructions for the learner in a colored box. The DoNow com-
ponent, shown in Figure 7.3, instead requires students to stop and think, preventing
them from quickly skimming through the page. It is an extension of the idea featured
in the A Data-Centric Introduction to Computing textbook [92], where “Do Now” boxes
are used throughout the text to encourage the reader to stop and reflect, avoiding a
passive read. Unfortunately, incentives are almost nonexistent when the rest of the
page is shown, often immediately revealing the answer to the question that was sup-
posed to make the learner think. On PyTamaro Web, the DoNow component blurs the
rest of the page as shown in Figure 7.3. At a minimum, the user must click an “I did
it” button to unlock the rest of the page. While there is no assessment, blurring still
introduces friction that can be pedagogically valuable.

Other MDX components are instead specific to PyTamaro. For example, the API
component can be used to refer to a name from the PyTamaro library. As Figure 7.4
shows, the name is rendered in red and monospace text next to a small PyTamaro
logo, helping learners realize that it comes from the library. Clicking the API name
opens a popup with the documentation, minimizing the time necessary for novices to
remember how a function works.

Embracing the support offered by the PyTamaro library for languages other than

93 7.4 A curriculum is a guided path through activities

Asking for a Graphic

Assume you have a friend who does not see the figure below:

O Do Now!
How would you describe the figure so that your friend can draw it?

Don't just think it. Say it. Aloud.

IDID IT!

Figure 7.3. A DoNow component blurring the remainder of the activity.

We ask for a rectangle by calling the function named & rectangle. You can hover with your mouse over the colored
function name to learn more about that function. If you do, you find out that the function requires three arguments:
the rectangle's width, height, and color. The arguments have to be provided in parentheses. They have to be
separated by commas. And they have to be provided in that specific order; this way it is clear that the first number
specifies the width and the second one the height.

The name « red denotes the color. Hover over the colored name to see its documentation. Yes, it's quite brief.

Figure 7.4. Two APl components for PyTamaro’s rectangle (hovered) and red.

English (Section 5.8.2), the web platform also supports activities written in multiple
natural languages and localizes the key parts of the user interface. An Italian-speaking
student can thus enjoy a programming environment localized in Italian, work on an
activity written in Italian, and use the Italian version of the PyTamaro API. (Or, of
course, any mix of the above, once they are ready to embrace multilingualism.)

7.4 A curriculum is a guided path through activities

A gallery to showcase activities, as shown in Figure 7.1, can be useful to spark the
curiosity of a casual user or provide inspiration to a teacher struggling to decide on
which graphics to program.

Effective learning, however, requires a structured path. Programming concepts,
language features, and library functions all need to be introduced gradually.

To fulfill this need, the platform enables content authors to create curricula. A
curriculum is a sequence of activities that students are expected to follow in order.

94 7.4 A curriculum is a guided path through activities

Some activities may be optional, and sometimes students can select one of multiple
alternative activities.

A curriculum is divided into units. The platform does not prescribe the length of
a curriculum: some curricula consist of only a handful of activities in a single unit,
whereas other teacher-designed curricula cover an entire semester of programming
activities with many units.

Figure 7.5 shows the first part of a curriculum dedicated to teaching the basics
of programming to complete novices using PyTamaro. The curriculum starts with an
introductory unit consisting of a single activity that gives a broad overview of what
programming means. Completed activities are marked with a trophy: in Figure 7.5,
that is the case for the “Ticino Coat of Arms” activity.

Then, learners execute their first programs to create simple graphics with PyTa-
maro. The second unit consists of two steps that must be completed in order. The
first step requires students to work on the “Rectangles” activity, in which PyTamaro’s
rectangle function is called with different arguments.

For the second step, learners can fulfill the requirement by completing one of the al-
ternatives: an activity to draw a rugby ball, or one to draw a watermelon. In those activ-
ities, students learn how to introduce names for graphics and use PyTamaro’s el1lipse
function.

The author of a curriculum can also specify a set of competencies, learning objectives
that students are expected to achieve when completing an activity. These competencies
are represented as icons (collapsed at the bottom right of each activity in Figure 7.5). As
learners progress through a curriculum, they acquire badges for those competencies as
they get practiced. Figure 7.6 shows the competencies acquired after completing the
first two activities of the introductory curriculum discussed above. This attempts to
combine the appeal and the extrinsic motivation of “badges” with the reinforcement of
programming skills.

The platform does not yet support any form of automatic grading for students’
work. The emphasis has been on developing as many features as possible that directly
help learning, as opposed to the convenience of assessing student work automatically.
For this reason, an activity is considered complete simply when all code cells have been
executed without errors.

Future developments of the platform could introduce the notion of a reference so-
lution for the activities, which would enable more sophisticated forms of checking.
(However, determining the equality of graphics in a way that makes sense pedagogi-
cally is all but a trivial task, as discussed by Barland et al. [18].)

95 7.4 A curriculum is a guided path through activities

START

l

A Quick Introduction

|

Ticino Coat of Arms @

l

Running Code to Create Graphics

Pad

l
b
E—

Rectangles 9»3

Rugby Ball Watermelon

Three Simple Ways to Compose Graphics

Figure 7.5. The beginning of a curriculum hosted on PyTamaro Web to introduce
programming to complete novices using PyTamaro.

96 7.5 Privacy and pragmatic reasons dictate the platform architecture

MY COMPETENCIES

¥ Import Names

-

B Use Names

2+ Numeric Literals

<> Compose Expressions 1
_'ﬁi Call Functions

[Z Perform Output

o Use Colors

[l Primitive Graphics 1

Figure 7.6. Badges for competencies on PyTamaro Web after completing two activities.
In blue, competencies related to programming. In green, competencies related to
graphics.

7.5 Privacy and pragmatic reasons dictate the platform
architecture

The laws regulating data protection in the European Union and in Switzerland impose
strict privacy requirements [268] that shaped the architecture we chose for the web
platform.

Teachers cannot force their students to register an account on an arbitrary platform,
unless specific agreements apply. For this reason, PyTamaro Web was designed to be
accessible without the need for any user account. Nevertheless, it is still desirable for
users to have a profile, so that they can resume working from where they left, including
the code written in the programming activities and the progress in curricula. Modern
web technologies enable achieving this combination: browsers include storage space
that can be used by web applications, such as localStorage.

When a user visits PyTamaro Web for the first time, a profile is created and stored
in their browser. The profile is always kept on the client and never stored on the server.

PyTamaro Web is a web application developed in TypeScript using Next.js, a React
framework. Without getting lost in the specifics of the implementation, Figure 7.7 gives
a bird’s-eye view of the architecture.

The web application is generously hosted on university servers. This makes it nec-
essary to minimize the resources needed to run the application in production. To keep
the load on our server at a minimum, all the pages of the application are statically
generated at build time. An application backend exists solely to accomplish two goals:

97

7.5 Privacy and pragmatic reasons dictate the platform architecture

Local Profile

localStorage

Client | Server
| Platform Analytics Error Monitoring & User Feedback
| Plausible Sentry
PyTamaro Web Frontend I | PyTamaro Web Backend Events
TypeScript / Next.js | TypeScript / Next.js Database
[PostgreSQL
WfM |
Python Code Analyzer I Code Execution Cache Code Runner
Rust / Ruff AST I Redis Docker / glot

I v

| PyTamaro Docker Images

Figure 7.7. Architecture diagram of the PyTamaro Web platform. Gray boxes indicate
third-party projects used as is.

* Execute the Python programs. Projects such as Pyodide offer a Python environ-

ment running directly on top of the browser JavaScript engine via WebAssem-
bly. However, the PyTamaro library is built on top of the Python port of the
C++ Skia graphics library, which cannot be installed in a Pyodide environment.
We thus need to execute Python programs that use PyTamaro on our servers.
To this end, we use glot!, a third-party tool to execute untrusted code within
ephemeral Docker containers. These containers execute Docker images that in-
clude Python, PyTamaro, and a selection of fonts to render text.

Record user events. Before executing their first program on the platform, users
are asked if they consent to voluntarily participate in a data collection project
for research purposes. Users are represented with a random, unique identifier.
When users give consent, the content of the code cells is stored every time the
code is executed, together with some meta information (such as the activity in
which the code has been executed, or the initial content of the code cells as
created by the activity author). Other kinds of secondary interactions with the
platform are also recorded as events.

The structure of the database of events is inspired by Blackbox [35], a database of

code submitted by users of BlueJ, an educational IDE for Java [148].

https://github.com/glotcode/glot

https://github.com/glotcode/glot

98 7.6 Teachers contribute content using version control

In the longer term, we are evaluating alternatives to shift the execution of Python
programs—an expensive and risky operation—from our server to the user’s browser.
In the meantime, we introduced a cache using Redis to avoid executing the same code
multiple times, alleviating the load on the server.

7.6 Teachers contribute content using version control

On most web platforms, authors create and modify content using a special area of the
web platform with access granted only to privileged users. These system are commonly
called “Content Management System”.

The PyTamaro Web platform statically generates its pages at build time and does
not include a system to manage the content via web pages. The reason is twofold. First,
such a system requires to handle accounts, a feature we deliberately avoided as argued
in the previous section. Second, creating a custom Content Management System has
significant development costs we pragmatically tried to avoid.

Instead, teachers contribute their content using regular version control with git.
Access right management is offloaded to GitHub. The remainder of this section docu-
ments how this was technically feasible: uninterested readers can safely jump to Sec-
tion 7.7.

Figure 7.8 illustrates the steps that take place when a teacher wants to update
their content on the PyTamaro Web platform. Each teacher has an account on GitHub.
This account grants them read-only access (blue arrow of Figure 7.8) to the main
pytamaro-web repository, and write access (green arrow) to a repository dedicated
to their content (activities and curricula). The teachers’ repositories are integrated
in the platform repository as git submodules, which are represented as hexagons in
Figure 7.8.

As a first step, teachers clone both the platform repository and their personal repos-
itory on their computer. They can work on their content and run the platform locally
to preview the final result. At any time, they can commit their changes and push them
to GitHub.

Whenever they deem the changes ready to be published on the public platform,
they also commit and push their changes to a dedicated, special branch named live
(Step 2 of Figure 7.8).

GitHub recognizes that a push event occurred on the special branch, and triggers
a webhook notification to a server under our control (Step 3). Our server attempts to
build the platform with the updated content from the teacher.

When the build succeeds without errors, the changes can be integrated without
problems in the main repository. Our server has write access (green arrow, Step 4 of

99 7.6 Teachers contribute content using version control

Own Server

A

e build with
update'd content

pytamaro-web
pytamaro-web-

teacher1 pytamaro-web-
teacher1

pytamaro-web-
0 Teacher 1 ﬁ

Developer

pytamaro- pytamaro-
web web-teacher1

Figure 7.8. The process used to integrate new contributions from a teacher in PyTamaro
Web.

100 7.7 We used the platform for a self-guided Hour of Code curriculum

Figure 7.8) to the platform repository and can update the commit referenced by the
submodule to the latest commit created by the teacher.

In turn, this last push triggers a webhook notification configured on the platform
repository: GitHub signals to our server a request to build and deploy the entire plat-
form (Step 5). When this process ends, the changes made by the teacher are visible to
everybody on the publicly deployed platform.

Effectively, a teacher’s workflow consists only of Step 1 and 2: the remaining steps
are handled transparently.

Step 5 of this process is also used by the actual developers of the platform, who
have write access to the platform repository and can thus directly commit and push to
its special branch to start a new deployment.

7.7 We used the platform for a self-guided Hour of Code
curriculum

The “Hour of Code” program aims to bring at least an hour of “programming experi-
ence” to millions of students worldwide [278]. The program’s website? links to short,
self-guided tutorials that students can complete in approximately one hour.

The short duration of the activity makes it challenging to teach actual programming
content. Despite this, a team of Bachelor’s students, supervised by members of the
research group, accepted the challenge and developed a short curriculum hosted on
the PyTamaro Web platform.

The curriculum is entitled “Program Your Own Castle™

. A brief overview showcases
the features of the web platform and serves as an example of using PyTamaro to teach
programming in a highly constrained environment (i.e., short duration and lack of in-
person guidance).

The curriculum mixes history and programming, involving students in a quest to
build a fortified castle to defend from invaders. The castle has been modeled after
“Fortezza Bellinzona™, a set of three medieval fortified castles located in Tessin and
part of the UNESCO World Heritage.

The curriculum consists of five units with short activities. In the first unit, students
learn to execute code and use PyTamaro’s show_graphic to output parts of the cas-
tle: walls, entrance doors, and battlements. The second unit teaches them how to use
names to refer to a graphic. The third unit focuses on passing arguments to call func-
tions. For example, a drawbridge function has a parameter that determines whether

https://hourofcode.com
Shttps://pytamaro.si.usi.ch/hoc/castle
*https://fortezzabellinzona.ch/

https://hourofcode.com
https://pytamaro.si.usi.ch/hoc/castle
https://fortezzabellinzona.ch/

101 7.7 We used the platform for a self-guided Hour of Code curriculum

the drawbridge is open or closed, and a battlement function requires to specify the
color and the shape of the merlons (Figure 7.9). The fourth unit is all about lists: stu-
dents manually create lists to build a tower and a curtain wall by juxtaposing graphics
with above and beside. The final unit consists of just one activity in which students
modify a castle like in Figure 7.10 to make it their own.

from pytamaro import show_graphic

from castle_components import battlement

from colors import red, yellow, green, cyan, blue, purple, pink, grey
from merlons import rectangular_merlon, rounded_merlon, split_merlon

@ Create a pink battlement with split merlons
my_battlement = battlement(pink, split_merlon)

© VOV O N O U~ WN R

[

show_graphic(my_battlement)

DONE v

Figure 7.9. Solution: the battlement function is called to produce a pink battlement
with split merlons.

Figure 7.10. Initial version of the castle in the final activity of the “Hour of Code”
curriculum.

Students know how to call functions and can modify the arguments to change the
color and the type of certain graphics. They also know how to use lists, and can thus
add or remove elements both horizontally and vertically.

102 7.8 The platform hosts several activities and curricula

Given its brief duration, this curriculum could not start from primitive shapes: it
would have been impossible for students to build reasonably-looking graphics in such
a short amount of time. Nonetheless, it focuses on the visual decomposition of a castle
into its parts, a seed to teach the skill of problem decomposition.

No part of the castle was created in a raster graphics editor: the authors of the ac-
tivities programmed all the various graphics with PyTamaro. These graphics effectively
constitute an additional library. To support this use case, the PyTamaro Web platform
allows authors of activities to bundle an additional set of Python files, which are not
shown to the users but included in the execution.

7.8 The platform hosts several activities and curricula

The “Hour of Code” curriculum is a special and atypical use for the PyTamaro Web
platform.

Originally, all the activities available on the platform were created by the research
group to illustrate possible uses of PyTamaro. The target audience consisted mainly of
high school teachers, and possibly of some of their students. Today, the platform hosts
many other activities and curricula created by Swiss high school teachers. Some of
these activities are an adaptation of the original ones (e.g., translated into a different
natural language), while others have been designed anew (e.g., a teacher created a
curriculum with activities on optical illusions). Finally, the platform also hosts activities
in service of the middle school course described in Section 6.7.

When users consent to anonymously share their data, we collect usage statistics that
indicate how much the platform has actually been used. The data collection started on
September 2023 and is currently ongoing. Below, numbers refer to data up until July
2025.

The platform currently hosts 215 activities created by the research team, 12 activ-
ities for the Hour of Code curriculum, 31 activities for the middle school course, and
275 activities authored by 10 different high school teachers. Some of these activities
are part of one or more curricula. Currently, there are 19 curricula created by the
research team and 31 curricula developed by high school teachers.

Execution data demonstrate that the platform is in active use: in less than two
years, it has executed more than 782000 Python programs, written by over 22000
different users.

The collection of this large amount of data written by learners is inspired by Black-
box [35] and will allow us to perform similar analyses on Python code, such as studying
errors or language features [32]. This data can also provide a different perspective on
how PyTamaro influences the programs novices write in practice.

Chapter 8

The Toolbox of Functions Promotes
Abstraction

Due to the limited classroom time available, programming lessons often focus on writ-
ing small one-off pieces of code. The focus lies on getting students to solve specific
problems, and students then throw away their solutions once they are done. No incen-
tive is placed on defining proper abstractions that can be later reused.

RQ How can an approach be designed to support students in reusing their code,
practicing abstraction by saving and using the functions they define?

This chapter describes the Toolbox of Functions, an approach to encourage code reuse
as a form of abstraction in a motivating and simple way. We implemented the approach
as an extension of PyTamaro Web (Chapter 7).

8.1 We should move from code clones to code reuse

When they grow beyond toy examples, programs invariably end up consisting of mul-
tiple parts that accomplish similar behaviors. How are these related behaviors imple-
mented in program code? One straightforward option is writing the same or similar
code as many times as needed. These duplicate parts of program code are known as
code clones. Code clones can be classified into different types [150], ranging from being
exact duplications of identical chunks of code, to being duplications except for some
identifiers, to having some additional or missing parts of code.

Producing code clones is disadvantageous because it leads to maintainability is-
sues [138]. A bug discovered in one clone, or a change needed to accommodate a new
functionality, needs to be identified and manually applied individually to each clone.

103

104 8.1 We should move from code clones to code reuse

8.1.1 Code clones are widespread

Despite the disadvantages, programmers frequently duplicate code. The adage “Copy
& Paste” embodies this idea. Such an operation is sometimes considered the fastest
way to achieve a certain goal.

Because abstraction is considered a fundamental but difficult concept to master
in computer science [227], it is perhaps unsurprising that novice programmers avoid
abstractions and frequently resort to copy-paste [266, 142].

Studies show that even code written by experienced programmers commonly con-
tains code clones. For example, code clones are common in code examples published on
Stack Overflow [17] and in code cells contained in Jupyter notebooks [146]. A large-
scale study on GitHub repositories across multiple programming languages found high
rates of code duplication in files both within a repository and across repositories [166].

The recent diffusion of powerful language models for code (Section 2.8) and their
integration in IDEs reduced the time needed to duplicate a piece of code even further.
This applies also to non-exact clones, such as those with replaced identifiers. The lan-
guage model can quickly recognize the desired pattern even just after typing the first
replacement, and can instantly complete the rest of the code.

8.1.2 Code clones can be avoided with code reuse

Software engineering as a discipline realized a long time ago the possibility of writing
programs in a modular sense [277, 198]. These “modules” have been variously called
subroutines, procedures, or functions; fundamentally, they are abstractions. Modern
programming languages support several forms of abstractions, including some more
elaborate than the ones mentioned above, such as classes.

Given that this dissertation focuses on introductory programming, we will concen-
trate on functions, as they are a simple but powerful form of abstraction that is suit-
able for novices in a school context. Functions can offer “configuration options” [277]
through parameters, to accommodate the differences in behavior that are required in
different parts of the program.

When the code to achieve a certain functionality is abstracted as a function, it can
be reused by calling that function in multiple places within the program, every time
one needs that functionality.

The next logical step is to reuse code across programs. Indeed, programmers are
familiar with the idea of using functions from a library. Programming languages come
by default with libraries containing several functions deemed useful in many contexts
(a library for operations with dates and times, for example).

105 8.1 We should move from code clones to code reuse

8.1.3 Environments do not always favor code reuse

Code reuse is however not on the path of least resistance: features of existing IDEs can
discourage reuse and instead lead to code clones.

8.1.3.1 Environments stimulate the use of code snippets

Programmers, both novice and experienced ones, can find themselves not having a
clear idea of how to solve a problem. In most cases, that specific problem—or a very
related one—has already been solved by someone else, and thus the programmer can
try to obtain a fragment of code, either to include as is or to adapt with minor modifi-
cations [16].

These code snippets can be obtained in different ways from several different sources,
such as code-repository sharing platforms (e.g., GitHub), Q&A platforms (e.g., Stack-
Overflow), code-snippets sharing platforms (e.g., GitHub Gist') and language models,
that generate code fragments based on the code they have been trained on (which was
in turn sourced from the aforementioned platforms).

Moreover, some environments for notebooks, such as Google Colab?, allow users
to directly inject pieces of code from a collection of “snippets”: fragments of code to
solve recurring programming problems. The environment comes with a selection of
pre-written snippets, but also allows users to save and retrieve their own.

8.1.3.2 Environments can offer more advanced templates for code

Online platforms are not the only source of fragments of code: IDEs also provide fea-
tures to facilitate the repeated insertion of specific code templates. Templates are more
powerful than snippets because they may contain holes to be filled in by the program-
mer when they want to include them. When code templates become fully concrete,
they effectively turn into snippets.

Some IDEs use code templates to assist in writing “boilerplate code”, i.e., repetitive
patterns of code. For example, the for keyword can be automatically expanded to the
full skeleton of the for loop statement in a language like C, and the keyword class
can be turned into a complete class declaration in Java.

More advanced environments also enable developers to define their own custom
templates. These features go under different names, such as IntelliJ’s Live Templates®

https://gist.github.com

https://colab.research.google.com

*https://www.jetbrains.com/help/idea/creating-and-editing-live-templates.
html

https://gist.github.com
https://colab.research.google.com
https://www.jetbrains.com/help/idea/creating-and-editing-live-templates.html
https://www.jetbrains.com/help/idea/creating-and-editing-live-templates.html

106 8.1 We should move from code clones to code reuse

and VSCode’s Snippets*.

Code templates can go even further: some IDEs employ static analysis techniques
to generate code leveraging information extracted from existing code. For instance,
IDEs such as Eclipse or IntelliJ IDEA include a widely used feature that generates an
implementation of the equals and hashCode methods for a class by inspecting the
fields declared by the programmer.

8.1.3.3 Scratch offers to remix projects by duplication

Code clones are not exclusive to textual programming languages. A study on Scratch,
a popular choice to teach programming in schools using blocks, showed that Scratch
projects contain code clones quite pervasively, and that functions as abstractions are
rarely used [6].

The Scratch platform promotes taking an entire published project and “remixing”
it. This is yet another example of an environment that favors code duplication over
reuse: instead of being able to import a well-defined abstraction, such as a sequence
of blocks packaged in a function, learners are nudged to “fork” [150] an entire project,
ending up with code clones.

8.1.3.4 Multi-file projects can require a complex setup

School teachers use different kinds of IDEs: some choose to work with novice-oriented
IDEs such as Thonny [12] or BlueJ [148], some work with full-fledged ones such as
Visual Studio Code (VSCode) [267], and others adopt web-based programming plat-
forms, which range from barebone ones like Ideone® to sophisticated ones like GitHub’s
Codespaces’.

No matter the setup, it is non-trivial to reuse code beyond one single file. IDEs
may structure a project into several files, potentially divided into several folders. This
complexity is one of the reasons behind the need for a build system: a tool that helps
programmers develop programs consisting of multiple files. Reusing code across files
requires configuring the environment to handle this setup. This may require config-
uring the IDE, adopting a precise structure for files and folders, and following the
non-obvious importing rules that deal with relative or absolute paths.

The problem is exacerbated when one wants to reuse code across different projects.
This requires refactoring code into a separate library, which can then be imported

*https://code.visualstudio.com/docs/editor/userdefinedsnippets
Shttps://en.scratch-wiki.info/wiki/Remix

bhttps://ideone.com

"https://github.com/features/codespaces

https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://en.scratch-wiki.info/wiki/Remix
https://ideone.com
https://github.com/features/codespaces

107 8.2 The Toolbox of Functions is an approach to promote code reuse

into multiple projects. Importing libraries outside those that come standard with a
programming language is often a source of pain, even for experienced developers.

Understandably, teachers want to eschew all these problems and have their students
spend the limited time available on actual programming, as opposed to configuring an
environment. As a result, students may be instructed to limit themselves to using only
a single file, be that a real file on their device or a virtual one in a web-based text editor.

Unfortunately, this deprives learners of the opportunity to get acquainted with code
reuse in the simple context of programs with a modest size. Having students practice
code reuse early on teaches them the right practices, which they can then apply to
larger programming projects.

8.1.4 Assignments do not always favor code reuse

Teachers of programming courses commonly design assignments for their students to
practice programming skills. At the beginning of an introductory course, a program-
ming assignment typically consists of small, independent exercises. As the course pro-
gresses, an assignment can become a small project. Still, most assignments do not
reuse solutions from earlier work.

Students can find themselves re-implementing the same functionality multiple times,
effectively writing code clones across assignments. Instead, learners should be guided
to decompose the solution of each assignment into functions, identify the ones that are
general and potentially useful for other problems, and use these functions again in the
subsequent assignments. This way, students could learn and practice code reuse in a
controlled context.

8.2 The Toolbox of Functions is an approach to promote
code reuse

A wise handyperson knows the advantage of having the right tool ready
to deal with a certain situation, and always carries a toolbox containing
various useful items. Based on this analogy, we propose that beginner
programmers should keep a Toolbox of Functions at their disposal: an
always-available library of functions that are potentially useful to solve
future tasks.

When students recognize the potential general applicability of a function they defined
(or the instructions in an assignment recommend doing so), they should add that func-
tion to their personal Toolbox of Functions. Adding a function to the Toolbox requires

108 8.3 PyTamaro Web implements the Toolbox of Functions

some polishing to become a reusable abstraction, much like programmers do for larger
pieces of software. The learner should identify all the dependencies of the function,
such as other functions called or global constants used, and keep them alongside the
function they intend to save. Then, students should consider improving the names of
the function and its parameters to ensure they are descriptive, annotate the signature
with types (for statically typed languages), and add documentation that reminds their
future selves of what the function is supposed to do. Optionally, they could also add
some tests to ensure that the function they extracted works as intended.

As the Toolbox of Functions grows, teachers can ask students to implement more
elaborate programs, counting on the fact that they have already implemented certain
functions which are ready to be used. Students can quickly solve parts of a larger
assignment by importing functions from their Toolbox, call them with the right argu-
ments, and then focus on the rest of the program.

This practice empowers students with a sense of satisfaction and purpose that de-
rives from reusing—instead of throwing away—the code they had to implement earlier
for a different problem. And this is achieved without any code clone or copy-paste ac-
tivity.

8.3 PyTamaro Web implements the Toolbox of Functions

The Toolbox approach we described is independent of both the programming language
and the environment. In this section, we describe one specific instantiation of the
approach, as it is implemented in PyTamaro Web (Chapter 7).

As a small-scale running example for demonstration purposes, we will consider a
tiny fictional curriculum with two activities, which ask students to draw an “eye” and
a “no entry” traffic sign.

8.3.1 A student starts by defining functions normally

When a student solves a programming activity, code clones may appear, possibly due
to copy-paste. This often occurs when working with a minimal educational library such
as PyTamaro, which does not include functions like square or circle to encourage
students to define their own starting from rectangle or ellipse (Chapter 5). Activ-
ities may deliberately have students feel the pain of writing repeated code to motivate
the introduction of function definition as a concept.

Code clones can occur within a single code cell or can be scattered across multiple
cells. Students can be instructed to observe the similarities between multiple clones
and identify the few differences. They can then define a function with a parameter for

109 8.3 PyTamaro Web implements the Toolbox of Functions

each of these differences, and with the body containing the clone, where the differences
are replaced by the parameters. Finally, each clone can be replaced with a simple call
to the newly defined function.

Defining functions enables code reuse within a single activity. The result of this
abstraction process is shown in Figure 8.1a for the “eye” activity, in which students
can extract a function to create a circle of a given radius and use it twice to draw the
pupil and the iris of the eye. Teachers can scaffold this process by providing interleaved
explanations and setting up code cells accordingly.

8.3.2 Functions can be added to the Toolbox

Once the student has defined their own function, they may want to save it for later use
by adding it to the Toolbox of Functions.

When the code written by a student contains the definition of at least one function,
a button with the icon of a handyperson’s tools appears automatically (Figure 8.1a).
This automatism is made possible by statically analyzing the Python code directly in
the browser (cf. Section 7.5).

Clicking on that button opens a popup with instructions on how to save a function
to the Toolbox (Figure 8.1b). Following the approach described in Section 8.2, learners
should:

1. Identify all the dependencies of the function they want to save. These may in-
clude import statements or global constants to define the names that are used in
the function body and other functions that are called by the function to be saved.
Other pieces of code are unnecessary and should be removed, such as possible
calls to the function being saved, as well as any code used for debugging (e.g.,
print).

2. Write a description to remember what the function does, as a minimal form of
documentation. When a function contains a docstring written following the PEP
257 convention [205], the Toolbox of Functions uses that string as documenta-
tion by default.

3. Implement and execute a short program that calls the function. This serves a
dual purpose. First, it serves as a lightweight, non-automatic form of testing, to
detect, for example, leftover side effects in the function body, such as debugging
statements. Second, it serves as a form of documentation on how to call that
function in the future (Figure 8.1c).

Students can then add the function to their Toolbox, without worrying about man-
aging Python files to set up and maintain a library.

110 8.3 PyTamaro Web implements the Toolbox of Functions

from pytamaro import black, cyan, ellipse, overlay, show_graphic, Graphic, Color

def circle(radius: float, color: Color) -> Graphic:

"""Create a circle of the given radius and color."""
diameter = radius * 2

return ellipse(diameter, diameter, color)

show_graphic(overlay(circle(20, black), circle(40, cyan)))

v

—> %

.oe

(a) Students define the circle function to solve the “eye” activity. They can save it by clicking
on the Toolbox button (red arrow).

Implementation

@ Clean up your code before saving a function to the toolbox. Here are some tips:

¢ Remove any code that is not needed by the function you want to save
» Remove calls that produce output (e.g., calls to print or show_graphic)
» Remove unnecessary imports (move them all to the top, combine them and get rid of unneeded ones)

from pytamaro import black, cyan, ellipse, overlay, show_graphic, Graphic, Color

def circle(radius: float, color: Color) -> Graphic:

"""Create a circle of the given radius and color."""
diameter = radius * 2

return ellipse(diameter, diameter, color)

(b) A popup opens. In the first part of the popup, instructions guide students in cleaning up
their code to make the function reusable.

Function

Function to save circle v Create a circle of the given radius and color.

Document what this function does
Example that uses this function

from toolbox import circle
from pytamaro import show_graphic, green

show_graphic(circle(10, green))

v

®

SAVE TO TOOLBOX

(c) In the second part of the popup, students have to write minimal documentation, implement
and run an example program before being allowed to add the function to the Toolbox.

Figure 8.1. Adding circle to the Toolbox of Functions in the “eye” activity.

111 8.3 PyTamaro Web implements the Toolbox of Functions

HOME ACTIVITIES q
Function from library toolbox IA. !'

circle(radius: float, color: Color) = Graphic

MY TOOLBOX

is_even radius ‘(% |
d A Graphic
clock color circle >
factorial k J

equilateral_triangle . .
Create a circle of the given radius and color.

ged
VIEW DETAILS

trapezoid
Usage
twice
from toolbox import circle

circle from pytamaro import show_graphic, green

square
show_graphic(circle(10, green))

v

(a) Students explore functions in the Toolbox (left sidebar, always visible while solving activi-
ties). Their documentation opens in a popup.

from toolbox import circle
from pytamaro import overlay, rectangle, red, white, show_graphic

show_graphic(overlay(rectangle(40, 10, white), circle(30, red)))

S,

(b) Students can import the circle function from the Toolbox just like from any other library

v

and reuse their code in a different activity.

Figure 8.2. Using circle from the Toolbox of Functions in the “no entry” activity.

8.3.3 Students can then use functions from their Toolbox

The tools in a physical toolbox are always near a handyperson. Similarly, the functions
in the virtual toolbox are near the programmer. On each activity page, the Toolbox of
Functions is presented in a sidebar (left side of Figure 8.2a). This quick overview of the
Toolbox of Functions realizes Victor’s idea of “dumping the parts bucket onto the floor”
to “encourage the programmer to explore the available functions” [265]. Students can
see that they have a circle function that may be useful in an activity where they need
to draw a “no entry” traffic sign (Figure 8.2b).

Moreover, by clicking on the corresponding item in the sidebar, students can quickly
retrieve the documentation for each of their functions. The documentation for all the

112 8.3 PyTamaro Web implements the Toolbox of Functions

libraries, including the Toolbox of Functions, is shown using a novice-friendly docu-
mentation system, which will be introduced in Chapter 9 (right side of Figure 8.2a).
The documentation describes the various properties of the function. The function sig-
nature is detected automatically and is optionally enriched with the parameter and
return types, if the original function was augmented with type annotations. The de-
scription and the usage example, instead, come directly from the learner. The example
code can be executed in-place, as a reminder of the function’s behavior (Figure 8.2a).

Once the student has identified a function to use, they can reap the benefits of code
reuse with almost no effort. All that is needed is to import the circle function from
the toolbox library and call it with the proper arguments.

8.3.4 The Toolbox grows over time

Functions in the Toolbox behave exactly like all the other functions. They can be used
as part of the definitions of new functions, and students can add these new functions
to their Toolbox of Functions as well. On a small scale, this showcases how to build
more powerful abstractions on top of simpler ones.

Behind the scenes, each function is stored in a separate file, to avoid possible con-
flicts (e.g., two functions may have been added to the Toolbox of Functions from two
activities that defined two different constants with the same name). All the Toolbox
functions required for a certain activity are exported from the toolbox Python module,
which in turn imports the necessary functions. These imports follow the topological
sort of the dependencies, to avoid circular imports.

All this complexity is hidden from the student, who can just focus on defining and
using functions, fulfilling the goal of practicing abstraction and code reuse without any
waste of time.

8.3.5 Students gradually learn to manage their Toolbox

The platform also enables learners to manage their Toolbox of Functions. Learners
can search their toolbox, remove functions from the toolbox, and modify existing func-
tions. This is an essential feature to support students who need to fix a bug or make an
improvement to their code. At the same time, it offers a sneak peek into the intricacies
of library and Application Programming Interface (API) evolution—another important
aspect of programming and software engineering [158]—in a controlled setting: when-
ever the signature (public interface) of a function in the Toolbox of Functions changes,
any program using it needs to be updated accordingly.

113 8.4 We collected initial data on students using the Toolbox in PyTamaro Web

8.4 We collected initial data on students using the Tool-
box in PyTamaro Web

We implemented the Toolbox of Functions in the PyTamaro Web platform during 2023.
Since then, we have collaborated with several teachers to explain the idea behind it
and motivate its use. We first created example activities to showcase the Toolbox of
Functions. Then we collaborated with high school teachers and explained its benefits.
Over time, teachers started to integrate the Toolbox approach into their own curricula
and activities they use regularly in class.

Focusing only on the last year, usage statistics show that students added more than
1420 functions to their Toolbox. A total of 32522 code executions made by 880 dif-
ferent users imported at least one function from their Toolbox into their code. Like for
the statistics reported in Section 7.8, the actual user count is likely underestimated, as
the platform collects data only from users who give their explicit consent. However,
users are simply identified by a randomly generated identifier stored in the browser’s
local storage, which might be reset at any time, leading to double counts.

Currently, the platform hosts more than 50 different activities that use the Toolbox
of Functions, created by 6 different instructors. According to a teacher who actively
uses the Toolbox of Functions in their lessons, students are keen on collecting functions
and watching their Toolbox of Functions grow. This anecdote suggests that students
can perceive curating a Toolbox of Functions as a benefit rather than a chore.

8.5 The idea of the Toolbox can be expanded and empir-
ically evaluated

The Toolbox approach focuses on functions because they are both a fundamental build-
ing block to define abstractions and widely taught in schools. However, other kinds of
abstractions exist, such as class definitions. The approach of the Toolbox of Functions
could be extended to support those as well.

The current model of the Toolbox of Functions has a flat structure. This is a deliber-
ate choice to keep adding to and importing from the Toolbox of Functions as simple as
possible, but it can become inadequate when the number of functions grows too large.
Some form of namespacing (e.g., Python submodules) could better organize the Tool-
box of Functions, but it would require dealing—albeit in a more controlled way—with
files and folders, which can be a pain point for students (cf. Section 8.1.3.4).

Changing the signature of a function stored in the Toolbox of Functions may break
all the code that depends on it. Students should be warned of the risks, making them

114 8.5 The idea of the Toolbox can be expanded and empirically evaluated

aware of the consequences of changing a public API. An expansion of the Toolbox
of Functions could be used to teach more advanced software engineering principles
related to code reuse, such as API versioning and the concept of third-party depen-
dencies. This could also open the possibility of introducing a code-sharing mechanism,
allowing students to reuse the code already written by their peers.

Finally, a future study could evaluate the effectiveness of the Toolbox of Functions
as an approach for teaching code reuse, for example by comparing the ability of identi-
fying and eliminating code clones between students who used the Toolbox of Functions
and those who did not.

Chapter 9

Judicious Is a Gradual Documentation
System for Novices

Programming is, at its core, using and defining abstractions. Application Program-
ming Interfaces (APIs) are the fundamental mechanism for programs to offer and use
abstractions. It should not be surprising then that APIs are ubiquitous. Myers and Sty-
los [188] observed that “nearly every line of code most programmers write will use API
calls” when one considers both public and private APIs.

The pervasiveness of API use in large software engineering projects is undisputed,
but the same is true also for small programs common in education. Even without con-
sidering third-party APIs, which are sometimes avoided by educators on the grounds
of their complexity, didactic programs invariably use APIs offered by the program-
ming language, which are sometimes collectively called the “standard library” of the
programming language. It suffices to think about example programs common in intro-
ductory programming: determining the length of the hypotenuse of a triangle using
Pythagoras’ theorem requires a function to compute the square root, and writing a tiny
game that asks the user to guess a number requires a function to generate a pseudo-
random number. Moreover, these programs need to perform input/output operations,
which are also achieved using APIs.

Given the number and the size of software libraries, memorizing all the details
of APIs is an impossible task. Worse, students wasting resources on memorizing the
inessential is a distraction from the goal of learning how to program.

Educators remind students that all libraries, especially the ones that come stan-
dard with the programming language, are extensively documented and this reference
documentation can be checked at any time needed. However, the first experience of
novice programmers with documentation systems is often frustrating, as these systems
are normally targeted at professional developers. They have the significant advantage

115

116

of being exhaustive, at the expense of including several concepts (such as language
features or technical jargon) that novices have not yet learned. They contain a lot
of information, which becomes hard to interpret. Figure 9.1 exemplifies these issues,
showing the official documentation of Python’s print function: unless novices use a
REPL, they cannot avoid using the function to visualize the output. Unfortunately, its
documentation is unapproachable for students at that initial stage, despite their pro-
gram potentially being as simple as print ("Hello, world!"). To wit: professional

print(xobjects, sep=' ', end='\n', file=None, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file, and flush, if
present, must be given as keyword arguments.

All non-keyword arguments are converted to strings like str() does and written to the stream, separated
by sep and followed by end. Both sep and end must be strings; they can also be None, which means to
use the default values. If no objects are given, print () will just write end.

The file argument must be an object with a write(string) method; if it is not present or None,
sys.stdout will be used. Since printed arguments are converted to text strings, print() cannot be
used with binary mode file objects. For these, use file.write(...) instead.

Output buffering is usually determined by file. However, if flush is true, the stream is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

Figure 9.1. Official documentation of Python’s print.

documentation systems can be intimidating and overwhelming for the beginner pro-
grammer.

Given this situation, we ask:

RQ How can a documentation system be designed to accompany novices gradually
as they learn programming?

This chapter first describes existing documentation systems that are used in education.
It then draws from prior research in the learning sciences and programming languages
to motivate and illustrate in Section 9.2 the design of Judicious, a novel documentation
system explicitly designed to accompany novices as they learn to program. Judicious
has been specifically built to document the PyTamaro API, but it is effectively a generic
documentation system. We compare it to existing systems to discuss tradeoffs and
limitations.

117 9.1 We briefly review documentation and introductory programming

9.1 We briefly review documentation and introductory
programming

The landscape of documentation systems is rather rich and varied. Some systems
come standard with the tooling of a programming language (e.g., Rust’s rustdoc),
while others need to be installed separately. A system can support a single program-
ming language (e.g., scaladoc for Scala) or multiple programming languages (e.g.,
doxygen supports C/C++ but also PHP, Python, and many others). Typically, docu-
mentation systems allow extracting information from source code in different markup
formats (e.g., reStructuredText) and can produce documentation in several formats
(e.g., HTML).

9.1.1 There are a number of different documentation systems

We do not conduct a systematic review of all documentation system for programming.
Instead, we rather focus on selected systems that have known use in introductory pro-
gramming, describing them briefly.

9.1.1.1 Javadoc for Java

Java is a popular language for teaching programming. The de-facto standard tool for
documenting Java programs is javadoc [151], originally developed by Sun. The name
Javadoc can also refer to the format used to write Java comments (enclosed within /**
and */) so that they can be recognized by the tool.

Beginner programmers are likely to encounter web pages generated with javadoc
when browsing the functionality of one of the many “collection classes” [131].

The pedagogical development environment BlueJ [148] offers special support for
Javadoc. Students can quickly use a drop-down menu to generate the HTML version
of the documentation for the currently open file. The environment nudges beginners
towards writing Javadoc comments by including them in the template for new classes.
However, a recent study [34] analyzed programs written with BlueJ and did not find
documentation comments half the time, despite them being initially in the template.
This suggests that students and educators do not find enough value in writing them,
given what they get in return.

9.1.1.2 Scribble for Racket

Scribble is a collection of tools to produce documents and can also serve as a documen-
tation system. Scribble is used to document Racket APIs, including those offered by

118 9.1 We briefly review documentation and introductory programming

the beginner-friendly libraries included in the How to Design Programs textbook [82].

The educational programming language Pyret [256] also uses Scribble to document
its libraries. The accompanying A Data-Centric Introduction to Computing textbook [92]
encourages students to consult the documentation to discover the functions available
in the libraries.

9.1.1.3 Sphinx for Python

Sphinx is a documentation system originally developed for Python, which at the time
of writing is arguably the most common language used in introductory programming.
Sphinx has then been extended to support other programming languages. It leverages
docutils to support multiple markup formats for writing documentation comments.

Students end up visiting HTML pages generated by Sphinx when looking at the
documentation of the Python standard library [257] or the API reference of the myriad
of third-party libraries available in Python’s ecosystem (e.g., pandas which is common
in “data science” courses [37]).

9.1.1.4 Pylance for Python

Visual Studio Code [267] is currently a popular environment for programming devel-
oped by Microsoft. It targets professional developers, but is widely used in education as
well [252]. The environment supports multiple programming languages, as language-
specific services (“Intellisense”) are provided by extensions that communicate with the
editor via Language Server Protocol. Microsoft directly provides a Python extension
that includes a debugger and Pylance, a separate extension offering type-checking,
code completion, and documentation.

Programmers access the documentation by hovering over a name. When Pylance
can resolve what that name refers to (e.g., a function), it displays a form of documen-
tation in a modal window as shown in Figure 9.2 for the sqrt function imported from
the math module.

(function) def sqrt(
x: _SupportsFloatOrIndex,
/

) —> float

Return the square root of x.

sqrt(2)

Figure 9.2. Pylance’s documentation of the sqrt function.

119 9.2 Judicious is a novel pedagogical documentation system

9.1.2 API documentation for beginners is sometimes ad hoc

Systems that have been developed primarily with the needs of professional program-
mers in mind can also be adopted in education. On the one hand, educators may
encourage the use of these systems because of their authenticity. Students feel that
they are familiarizing themselves with tools also used in industry; this can contribute
to a positive attitude towards learning. On the other hand, full-fledged systems can
quickly overwhelm novices with information that is hard for them to understand.

When the desire to offer a tailored experience prevails, educators may adopt a
simpler form of API documentation. This ad hoc documentation is normally written
manually and included in textbooks or teaching materials.

WebTigerJython’s documentation of the gturtle Python library [272] is an exam-
ple of ad hoc documentation for students. The API documentation assumes the form
of a table with three columns: a function, a possible abbreviation, and a description in
natural language. The function column contains a signature of sorts. For example, the
right function is listed as right (angle) to indicate that it has one parameter (the
angle of rotation). The setPenColor function is listed as setPenColor("color")
presumably to indicate that it has one parameter (the new color of the pen) of type
str.

This form of documentation has the advantage of being completely flexible. The
author can decide exactly what to present in the documentation, including which ter-
minology should be used, such that the documentation is just right for the intended
context.

Unfortunately, ad hoc documentation comes with major drawbacks. First, as ar-
gued above, novices interact with documentation that is not authentic, which may be
detrimental to their motivation. Second, manually writing documentation is a time-
consuming activity that not every educator can afford, potentially having to resort to
one written by someone else for a different context. Third, like with all manually writ-
ten documents, there is the risk of a lack of consistency: different notations could be
used throughout the document, both intentionally and inadvertently, carrying the risk
of confusing the novice programmer.

9.2 Judicious is a novel pedagogical documentation sys-
tem
Can a documentation system be designed to retain most of the benefits of real systems

while incorporating sensible pedagogical features?
This section presents Judicious, a minimalist documentation system we developed

120 9.2 Judicious is a novel pedagogical documentation system

to assist beginner programmers during their first steps in learning programming. Ju-
dicious is released as open-source software' and has been integrated in the PyTamaro
Web platform (Chapter 7).

The system targets Python, given its current popularity as a programming language
for learning programming (Section 2.4). The focus on a single programming language
prevents a combinatorial explosion of the number of features needed to accommodate
each language’s idiosyncrasies. At the same time, the pedagogical ideas embodied by
Judicious are not limited to Python and could be implemented for other programming
languages as well.

Judicious’s main characteristics revolve around how documentation is presented,
rather than how documentation can be programmatically extracted from source code.
Currently, the system supports manually specified documentation, automatic extrac-
tion from source code leveraging Sphinx, and a simplified automatic extraction from
source code as described later in Section 9.2.6.

We proceed to illustrate each pedagogical feature of Judicious in turn, presenting
a rationale to motivate their need and their design based on extant work from the
learning sciences and programming languages research communities.

9.2.1 Judicious includes a diagrammatic representation

From the very beginning, novice programmers have the need to use functions, often
the ones included in the standard library. Students first familiarize themselves with
the concept of a function in mathematics. Pure functions in programming are pre-
cisely functions in the mathematical sense. Schanzer [234] demonstrated that careful
pedagogical choices facilitate the transfer of concepts—most prominently, functions—
between algebra and programming. We can thus resort to techniques from mathemat-
ics education to help learners bridge between the same concept in the two subjects.

A function is commonly explained as a “black box”, an opaque machine that ingests
something and produces something else. The notion is often visualized with a diagram
that represents the machine as a box with an entrance and an exit. This notation has
been brought into computer science as well: Harvey uses a “plumbing diagram” to
visualize the composition of functions [112, Ch. 2]. This representation is also known
as the “Function as Tank” notional machine in the collection presented by Fincher et al.
[86].

Figure 9.3 depicts how Judicious includes a diagrammatic representation of the
simple sqrt function from the math module. The function is represented as a rounded
rectangle with the function’s name at the center. Parameters are depicted as labeled

https://github.com/LuCEresearchlab/judicious

https://github.com/LuCEresearchlab/judicious

121 9.2 Judicious is a novel pedagogical documentation system

incoming arrows from the left, the return value as an outgoing arrow to the right.

This representation deliberately attempts to match very closely the representation
used for physical function cards in TamaroCards (Chapter 6), with the intent of helping
learners who also used TamaroCards to recognize the same concept.

Function from library math A i_
ue

sqrt(x)

sqrt

Returns the square root of the given number.
Figure 9.3. Diagrammatic representation of the sqrt function.

Multiple (external) representations can aid learning, provided that learners un-
derstand the notation and the relationship between the representation and the do-
main [5]. Indeed, multiple pieces of information are related to the parameter named
x in Figure 9.4. As customary in documentation systems, the parameter is shown in the
function signature at the top and further described in the list of parameters at the bot-
tom. Judicious clarifies the relationship between the element in the diagram that refers
to the parameter (the arrow on the left) and the textual description: when a student
hovers over one of these elements, they all get highlighted as shown in Figure 9.4.

9.2.2 Judicious documents one name at a time

One reason why programmers get discouraged from using API documentation is the
time it takes to retrieve what one needs, perhaps because it is scattered over mul-
tiple places [263]. Professional development environments recognize this need and
offer various forms “inline documentation”. For example, as discussed earlier in Sec-
tion 9.1.1.4, Visual Studio Code uses Pylance to show the documentation when hover-
ing over a known name (Figure 9.2).

Judicious offers that convenience to novices, sparing them from opening a separate
window to find the name they need in the middle of many others. The system analyzes
imported names and shows them in an interactive “documentation bar” above the code
editor, allowing students to retrieve the documentation of each name individually.

Figure 9.5 shows how the documentation bar appears for a toy program. Builtin

122 9.2 Judicious is a novel pedagogical documentation system

Function from library math A !"

exp(x)

exp

Returns the exponential of the given number.

Parameters

x exponent of the formula e*

Return

Exponential of the provided number

Figure 9.4. Hovering over an element in the textual or diagrammatic representation
highlights the corresponding parts in the other representation.

Docs: ®sqrt ®range ®print

from math import sqrt
for num in range(10):
print(sqrt(num))

Figure 9.5. Judicious’s documentation bar includes both imported and built-in func-
tions.

functions (e.g., print, range) are automatically detected when the source code con-
tains a call to them, without the need for imports.

9.2.3 Judicious presents documentation gradually

Computing education researchers have extensively studied the struggles of novices
when they begin learning to program (cf. Chapter 2). As part of learning to program,
beginners need to learn the syntax and the semantics of a programming language.
Programming languages intended for professionals have the big appeal of being used
in industry; at the same time, they include a multitude of language features that can-
not all be explained at the beginning. The size and complexity of such programming
languages can strain students’ cognitive load.

A strategy to simplify these languages to reduce the cognitive load is to create
smaller languages, also known as sublanguages. Section 2.6 briefly reviewed the his-

123 9.2 Judicious is a novel pedagogical documentation system

Function from library math — A i' Function from library math = A !_
ue

log(x) log(x, base=e)
)

log

Returns the logarithm of the given value.

Unless a different base is provided, computes the natural logarithm. Returns the logarithm of the given value.

Unless a different base is provided, computes the natural logarithm.
Parameters
) Parameters
x value to compute the logarithm of
x value to compute the logarithm of
Return base base of the logarithm

Logarithm of the provided value
Return

Logarithm of the provided value

(a) Basic view with diagram. (b) With optional parameters.
Function from library math = A !_ Function from library math = A i'
log(x: float, base: float=e) — float log(x: float, base: float=e) — float

Returns the logarithm of the given value.

Unless a different base is provided, computes the natural logarithm.

Parameters

x value to compute the logarithm of

base base of the logarithm
Returns the logarithm of the given value.

Unless a different base is provided, computes the natural logarithm. Return

Logarithm of the provided value
Parameters

x value to compute the logarithm of

base base of the logarithm

Return

Logarithm of the provided value

(c) With type annotations. (d) Without diagram.

Figure 9.6. A possible evolution of the documentation of the 1og function.

124 9.2 Judicious is a novel pedagogical documentation system

tory of various sublanguages developed over the decades. These sublanguages also
affect the development environment: for example, DrRacket programming environ-
ment [88] supports Racket’s sublanguages by adapting its behavior (e.g., which fea-
tures are available) depending on the sublanguage currently selected by the student.

Judicious applies this principle to documentation. Like a programming language,
the documentation should gradually grow with the beginner programmer.

Figure 9.6 shows a progression of visualization of the same log function, included
in Python’s standard math library. Toggle buttons at the top right allow learners to
set their preferences, potentially under the guidance of an instructor, for what gets
visualized.

At initial settings, the documentation of a function is shown with the diagrammatic
representation as in Figure 9.6a. This matches what learners are used to in maths and
can be used to introduce the concept of a function.

Once learners understand the basic mechanism of passing arguments to a function,
instructors can reveal that many functions in Python can also take optional parameters.
These parameters are shown in Figure 9.6c with a corresponding dashed arrow in the
diagram.

To understand the behavior of programs, types also serve as a useful form of docu-
mentation [209]. Originally a dynamically typed language, Python now supports type
annotations since version 3.5. Some educators are reluctant to use them because of
the additional syntactic burden. However, types are particularly useful in function sig-
natures to signal in a lightweight way which values the function accepts and which
ones it produces. Judicious gives users the choice of whether types should be shown
(Figure 9.6¢), allowing instructors to introduce them only at the time they feel ready
to.

Finally, when learners have mastered the concept of a function, the diagrammatic
representation can be hidden, resulting in Figure 9.6d, to get a more compact docu-
mentation.

9.2.4 Judicious distinguishes constants from parameter-less functions

Previous research has documented difficulties novices encounter with parameter-less
functions and the potential confusion with constants.

Altadmri and Brown [10] analyzed a year’s worth of Java compilations from over
250000 students in the Blackbox dataset and found almost 19 000 instances in which
over 10000 students did not write parentheses after a method call (e.g., when trying
to call the .toString() method). This study provided quantitative evidence about
a mistake already reported by instructors [128]. Relatedly, as already discussed in
Section 6.5, the inventory published by Chiodini et al. [52] contains a misconception

125 9.2 Judicious is a novel pedagogical documentation system

named PARENTHESESONLYIFARGUMENT> which describes the belief held by some stu-
dents that () are optional for function calls without arguments.

Judicious attends to this problem and distinguishes between accessing a constant®
and calling a parameter-less function. Figure 9.7 and Figure 9.8 contrast the two situ-
ations, respectively for pi from the math module and random from the random mod-
ule. The distinction is even more pronounced in the diagrammatic representation: the
parameter-less function retains all the characteristics of functions but does not have
any incoming arrow on the left; the constant is depicted as a blue rectangle with an
arrowhead.

Constant from library math A

pi

The mathematical constant i = 3.141592...

Figure 9.7. Documentation for the constant pi.

Function from library random A i'
ue

random()

s
v

Returns a random floating point number between 0 (included) and 1 (excluded).

Return

A random floating point number between 0 and 1

Figure 9.8. Documentation for the parameter-less function random.

Zhttps://progmiscon.org/misconceptions/Python/ParenthesesOnlyIfArgument

3Strictly speaking, Python does not (easily) offer immutable variables, but it is pedagogically sensible
to treat library variables as such. The official documentation also uses “Constant” as the terminology for
this case, e.g., https://docs.python.org/3/library/math.html#constants.

https://progmiscon.org/misconceptions/Python/ParenthesesOnlyIfArgument
https://docs.python.org/3/library/math.html#constants

126 9.2 Judicious is a novel pedagogical documentation system

Docs: Bgreet ®print Function from your code i-
def greet(message, n_bangs): greet(message, n_bangs)
return message + ("!" % n_bangs) &
message
print(greet("Hi", 3)) greet
n_bangs
(a) Function in the documentation bar. (b) Minimal documentation.
Function f d
unction from your coae .A. !-

greet(message: str, n_bangs: int) — str

(]

message

reet
n_bangs 8

o

Creates a greeting message ending with the specified number of exclamation marks.

(c) Documentation types and docstring.

Figure 9.9. Documentation of a student-defined greet function.

127 9.2 Judicious is a novel pedagogical documentation system

9.2.5 Judicious indicates functions with side effects

Figure 9.8 also features an explosion icon, which is how Judicious denotes a function
with side effects. This aspect is too often neglected even by professional documenta-
tion systems, despite being essential to highlight the distinction between the general
concept of functions in programming and functions in math.

It has been observed that novices struggle to grasp the distinction between return-
ing a value from a function and printing that value inside the function [147]. This
distinction is subtle, because didactic programs frequently print the value returned by
a function immediately.

It is not enough to distinguish between functions that do not return values (some-
times called “procedures”), because also functions that return values can have side
effects that are hard for beginners to see. After all, printing is just one of the possible
side-effecting operations. Functions from the random library mutate the internal state
of the pseudo-random number generator. This behavior violates the mathematical no-
tion of a function (“always produce the same output when the input is the same”) and
deserves to be pointed out explicitly.

9.2.6 Judicious automatically documents student-defined functions

So far we have described how documentation is presented, without discussing the flip
side: how documentation gets generated in the first place. Judicious allows novices to
document their functions in a lightweight way. The system leverages an existing Python
parser written in Rust and compiled to WebAssembly, running entirely in the user’s
browser. As soon as a student defines a function, the documentation bar automatically
includes it and visualizes the available data (Figure 9.9a). For example, when a student
writes code that defines a function greet, its documentation is readily rendered as
shown in Figure 9.9b.

Apart from a different icon displayed at the top of the diagram, which indicates that
this function is imported from student code and not from Python’s standard library,
every other aspect of the documentation remains the same. This unified design aims
to help students understand that the functions they import and use from a library are
no different from the ones they learn to define.

Students can then immediately appreciate the usefulness of adding type annota-
tions for the parameters and the return value of a function. The function greet shown
in Figure 9.9a can be easily turned into Listing 22: it can be augmented with types
and a so-called “docstring”, a string inserted as the first statement of a function that is
treated as a documentation comment. The documentation would then be rendered as
shown in Figure 9.9c. The increased intelligibility should prove useful whenever the

128 9.2 Judicious is a novel pedagogical documentation system

def greet(message: str, n_bangs: int) -> str:
"""Creates a greeting message ending with the
specified number of exclamation marks.'"""
return message + ("!" * n_bangs)

Listing 22. Example of a function defined in student code. This is the same function
shown in Figure 9.9a, with type annotations and a docstring comment.

student needs a refresher on how to use the function they defined a while ago.

9.2.7 Judicious includes usage examples

In addition to reading a textual description of a function’s behavior, seeing example
usages can also be a way to understand how a function works or to confirm that one’s
interpretation of the textual description is indeed correct.

Examples
5 log(e)
1.0

5 log(100, 10)

2.0

RES

Figure 9.10. Two examples shown in Judicious for the log function. The second
example only appears when the user enables optional parameters.

Figure 9.10 shows a pair of examples for the log function from Python’s math
library. Each example features a pair of Python source code and the result of its eval-
uation.

Judicious’ examples maintain the promise of a gradual system, to avoid overwhelm-
ing novices. By default, only the first example of Figure 9.10 would be shown, as it
uses the mandatory first parameter of the 1og function to compute the log of e. How-
ever, the function also has an additional optional parameter to specify the base of the
logarithm. When the user enables the optional parameters (Section 9.2.3), a second
example “unlocks” and is also shown. The lower part of Figure 9.10 shows how to use
log to compute a logarithm in base 10.

Examples are also an opportunity to reinforce the distinction between a function’s
side effects, such as printing to the standard output, and the result of evaluating a

129 9.3 PyTamaro’s documentation can be fully explored with Judicious

Examples
input()
iHey!E
[|

"Hey!'

RESULT INPU CoD

CODE

input(’'Name? ')
Name? iLucaE

"Luca’

Figure 9.11. Examples in Judicious for Python’s input function, showing separately
the output (I/0) and the result of the evaluation.

function call. Functions typically perform one action or the other, but some built-in
Python functions, such as input—which is commonly used with beginners—actually
perform both actions.

Figure 9.11 shows how Judicious presents two examples for the input function.
The first example is always shown, because it does not make use of the optional param-
eter. The user is expected to enter text, which is shown in a rectangle with a dashed
border and a keyboard icon. The result of evaluating the function (i.e., the return
value) is a string containing the text inserted by the user.

The second example is only shown when optional parameters are enabled (Sec-
tion 9.2.3) because it provides a string as an argument. That string is printed as output
and acts as a “prompt” for the user.

The clear separation in the interface between the I/0 operations and the result
of evaluating the function conveys the distinction between side effects and evaluation
results (Section 9.2.5), which can coexist in the same function.

9.3 PyTamaro’s documentation can be fully explored with
Judicious

Judicious is a generic documentation system oriented to novices that can be used to
teach Python. Its development was motivated by the need to offer novice-friendly doc-
umentation for PyTamaro. The minimal set of language features used by the library is
fully supported by Judicious. Teachers can thus begin to explain the idea of functions
and constants using PyTamaro, and then start using other functions that are part of
the Python standard library. Judicious presents them in the same way, to reinforce

130 9.3 PyTamaro’s documentation can be fully explored with Judicious

the idea that PyTamaro is not a “special version of Python”, but merely a library from
which one can import functionalities.

A teacher could remind students of how PyTamaro’s rectangle function works,
such as the order in which width and height need to be specified, by pointing students
to the documentation shown in Figure 9.12a. If types have been introduced, the version
of Figure 9.12b can be shown instead, for example to clarify that the color needs to be
a value of type Color and not a string.

Function from library pytamaro .‘. !- Function from library pytamaro .‘. !-
rectangle(width, height, color) rectangle(width: float, height: float, color: Color) = Graphic
width it width
_ _—
height height Graphic
— rectangle > > rectangle
color color
— I ——
Creates a rectangle of the given size, filled with a color. Creates a rectangle of the given size, filled with a color.
(a) Initial version without types. (b) Typed version.

Figure 9.12. Documentation of PyTamaro’s rectangle function.

PyTamaro’s common show_graphic function, which is used to output values of
type Graphic, is marked as a side-effecting function. In its basic usage, a student
would call the function simply by passing a graphic as the first and only argument;
the Judicious documentation would match this behavior. Later on, for example to
debug the pinning position, a teacher may want to expose students to the concept of
optional parameters. When True is passed as a second argument, show_graphic
outputs the graphic along with debugging information. As shown in Figure 9.13, the
documentation presented by Judicious grows to cover this more advanced usage.

Function from library pytamaro E RN O

show_graphic(graphic: Graphic, debug: bool= False)

i
graphic ‘(

show_graphic

¢

Figure 9.13. Documentation of PyTamaro’s show_graphic function, with the indica-
tion of side effects and the “optional parameters” feature enabled.

131 9.4 This is how Judicious compares to existing documentation systems

9.4 This is how Judicious compares to existing documen-
tation systems

We now compare the characteristics of our system with other documentation systems.
Given that programming languages exhibit significant variety in terms of features, we
restrict the comparison only to documentation systems for Python. For those systems,
we consider the output format that beginner Python programmers are most likely to
encounter. We thus compare Judicious’s web system to the HTML pages produced
by Sphinx (Section 9.1.1.3), which is used in the official Python documentation, and
Pylance (Section 9.1.1.4), which is used in Visual Studio Code.

Table 9.1 synthesizes the results of this comparison, which we now analyze in more
detail.

Table 9.1. Comparison of three documentation systems for Python.

Features Sphinx Pylance Judicious
HTML VSCode Web

89.2.1: Diagrammatic representation No No Yes
§9.2.2: Single-name documentation No Yes Yes
§9.2.3: Gradual documentation No No Yes
§9.2.4: Functions vs. Constants Yes Yes Yes
§9.2.5: Side Effects indication No No Yes
89.2.6: Student-defined functions Yes (heavyw.) Yes Yes
§9.2.7: Examples No No Yes

All language features Yes Yes No

Full coverage of libraries Yes Yes No
Extraction from source code Yes Yes Limited
Browsing an entire module Yes No No

9.4.1 Most pedagogical features are unique to Judicious

The upper part of Table 9.1 considers each key pedagogical feature of Judicious de-
scribed in Section 9.2.

The diagrammatic representation, the user-configurable gradual display of the doc-
umentation, and the indication of side effects are three characteristics unique to Judi-

132 9.4 This is how Judicious compares to existing documentation systems

cious. While the first two features are oriented toward novices, it is somewhat surpris-
ing to see that the two other systems we analyzed do not report side effects. (However,
this is not universally true: Scala programmers conventionally document this distinc-
tion by adding parentheses to effectful functions.)

All systems distinguish in some way functions from constants, although only Ju-
dicious offers a distinct diagrammatic representation as a further aid. Unlike Pylance
and Judicious, which are integrated with the code editor and allow quickly retrieving
the documentation for a single name, Sphinx’s HTML output is oriented to web pages
and shows several names on the same page.

All systems allow documenting functions defined by students (as argued in Sec-
tion 9.2.6, they are indeed no different from functions present in libraries). Judicious
and Pylance offer a lightweight approach: beginner programmers can access a mini-
malistic form of documentation for a function they just defined with zero extra actions.
This differs from systems like Sphinx (or Javadoc), in which the programmer needs to
execute a separate tool.

Given that all systems support showing text with markup, it is in principle possible
to show examples in each of them. Indeed, some third-party libraries documented
using Sphinx include examples as part of the description of their functions. However,
currently neither the official Python documentation shown on the website nor the one
provided within Visual Studio code provide any example. Examples that are revealed
gradually are thus a feature that is unique to Judicious.

9.4.2 Other systems offer certain features not in Judicious

The lower part of Table 9.1 considers other aspects where Judicious falls short in com-
parison to professional documentation systems. Judicious only covers a small subset
of Python’s extensive feature set: this enables offering novice-friendly functionalities,
but excludes language features that are legitimately needed by proficient program-
mers. Moreover, Judicious supports a limited form of extraction from source code: it
leverages a Python parser to extract functions from student code as described in Sec-
tion 9.2.6, and exploits Sphinx’s docutils and autodoc utilities to extract documen-
tation from the source code of existing libraries. However, the latter approach cannot
be applied to Python’s standard libraries because they are partially implemented in C
by Python’s reference interpreter CPython and are not annotated with standard doc-
strings. Indeed, the official documentation of Python’s math library is written manually
as a Sphinx document. We had to use the same manual approach to document those
libraries in Judicious.

A separate problem, actively investigated in research, is studying how developers
discover the APIs they need. Multiple studies have revealed intricate retrieval patterns,

133 9.5 The effectiveness of Judicious has not been empirically evaluated

often not well supported by existing programming environments and documentation
systems [250, 145]. Crichton [64] argues that programmers employ different kinds of
leads when searching (e.g., a description of a function behavior in natural language or
based on types) and proposes “scanning-oriented” user interfaces. Judicious, like Py-
lance, is only concerned with the visualization of the documentation of a single name.
The PyTamaro Web platform, however, offers dedicated pages to browse the Judicious
documentation. It is possible to search for a name and its description, or to explore the
set of documented libraries and then access the list of functions, constants, and types
available in a specific module.

9.5 The effectiveness of Judicious has not been empiri-
cally evaluated

Judicious has been designed by building on prior studies that observed and tackled dif-
ficulties novices have when learning to program. We analytically evaluated our system
against comparable state-of-the-art alternatives in Section 9.4, but the system still lacks
an empirical evaluation to measure its effectiveness in practice. (Although it does not
constitute an empirical evaluation, the case study that will be presented in Chapter 11
also explores the use of Judicious by teachers.) We received anecdotal positive feedback
from teachers who adopted it with their students on two aspects: the diagrammatic
representation, which helped to explain functions, and the ease of retrieving the doc-
umentation for a name, which drastically increased student usage of documentation.
The latter observation is not entirely surprising, as reducing friction is known to change
the behavior of users. For example, in an experiment, Google returned search results
with an additional 0.5-second delay and traffic dropped by 20% [101].

The documentation system itself also has limitations, which we discuss below.

Despite the current popularity as an introductory programming language, Python
is a complex language with an extensive number of features [211]. Judicious only sup-
ports the small subset of these features to cover an “expression-oriented”, “functional”
subset of the language that is still meaningful for a CS1 course [11]. The system thus
supports functions and constants but does not include classes with their methods. In
function definitions, in addition to “regular” parameters, Judicious supports variable-
length parameters and parameters with default values, given their pervasive use in
Python (even print uses all these features!). Less common options (positional-only
parameters and “kwargs”) are not supported.

The documentation of the Python standard library has been manually written for
Judicious, considering the target audience. The writing does not exhaustively describe
the functions: for example, it does not include which exceptions might be thrown for in-

134 9.5 The effectiveness of Judicious has not been empirically evaluated

valid combinations of arguments, and it reports a simplified version of the complicated
types that have been retrofitted to Python. Figure 9.2 exemplifies this predicament:
Pylance reports an obscure custom _SupportsFloatOrIndex type that accurately
describes the type of the parameter; Judicious resorts to f1loat, which is inaccurate
but more intelligible for novices.

Concerning side effects, we note that Judicious does not run sophisticated program
analysis. Functions in the standard library are manually tagged as effectful and no
purity analysis is run on student-defined functions.

Part IV

Empirical Investigations

135

Chapter 10

We Studied Transfer, Engagement, and
Code-Related Skills

As discussed in Section 2.10, a number of studies have demonstrated that graphics-
based pedagogies have positive effects on engagement [108, 241, 214, 15]. Something
that has received comparatively little attention is whether students generalize the con-
cepts they learn in the domain of graphics into programming concepts and transfer
them to programming in other domains. Ultimately, even approaches that teach pro-
gramming using graphics aim to teach students programming skills that they can also
apply in other domains.

Papert [194] argued that turtle graphics is an excellent vehicle to teach mathemat-
ics, programming, and problem-solving in general. However, Pea and Kurland [203]
conducted studies with children using turtle graphics in Logo and did not find the hoped
transfer. Planning skills did not improve after a year of programming in Logo [202].
And even for programming skills, the understanding of concepts depended highly on
the context. As an example: “a child who had written a procedure using REPEAT
which repeatedly printed her name on the screen did not recognize the applicability of
REPEAT in a program to draw a square” [203].

To the best of our knowledge, no study has been conducted to empirically evaluate
which approach best fosters transfer from programming using graphics to programming
in general.

Our study seeks insight into both engagement and conceptual transfer. We com-
pare two fundamentally different approaches to graphics: compositional graphics (Sec-
tion 3.5), as embodied by PyTamaro, and the well-established turtle graphics (Sec-
tion 3.4).

We ask the following research questions:

RQ1 Is there a difference in conceptual transfer from a short programming tutorial

137

138 10.1 Evaluations of graphics-based approaches and the challenge of transfer

with a compositional graphics library like PyTamaro or a turtle graphics library
to programming outside the domain of graphics?

RQ2 After a tutorial following either approach, are there differences in how students
read or write programs?

RQ3 Do the two approaches lead to different levels of student engagement or per-
ceived learning?

10.1 Evaluations of graphics-based approaches and the
challenge of transfer

A few studies have found evidence of transfer from graphics-based programming to
mathematics. Noss [192] carried out an experiment showing that Logo helped to learn
certain geometrical concepts. Schanzer et al. [232] presented initial data that show a
measurable transfer of skills from a “functional” programming curriculum (which also
includes compositional graphics) to algebra when instructional materials are carefully
aligned to the concepts normally covered in math classes.

Empirical evidence remains scarce on whether programming with graphics helps
with general programming skills. Already in the 1980s, Pea and Kurland [203] looked
into claims that Logo (and its turtle graphics) helps with problem-solving in general
but found little evidence in support; moreover, they found that after 30 hours of pro-
gramming with Logo, “children’s grasp of fundamental programming concepts such as
variables, tests, and recursion... was highly context-specific” [203], thus illustrating
how difficult it is for learners to transfer their knowledge from a particular context
or domain to others. More recently, Guzdial explored what they called the “learning
hypothesis” of their media computation curricula, but the results were inconclusive or
negative compared to a traditional curriculum [108].

Others have looked into block-based programming environments with graphical
affordances, such as Scratch, but found limited evidence of transfer, or even a negative
impact for some activities. For example, Grover and Basu [103] found that after an
introductory programming course in Scratch, students demonstrated several miscon-
ceptions about fundamental programming concepts. Weintrop et al. [273] argue that
certain aspects of block-based programming environments are counterproductive for
transfer to text-based programming languages, and that this learning trajectory needs
to be adequately supported.

139 10.2 Compositional graphics approaches should have potential for transfer

10.2 Compositional graphics approaches should have po-
tential for transfer

Chapter 4 identified several trade-offs in graphics-library design for novices. Chap-
ter 5 argued that a compositional graphics library like PyTamaro can be a meaningful
alternative to comparable libraries, under the right circumstances and given certain
pedagogical goals.

As noted above, PyTamaro is designed to assist in the acquisition of fundamental
programming concepts. For instance, few language constructs are needed for writing
PyTamaro programs (e.g., no classes and objects), the API is minimal (e.g., no func-
tions for loading external images), and neither mutable state nor coordinate-based
operations are present. That is, PyTamaro has deliberate limitations: learners are not
given access to certain functionality. This design should help manage complexity for
beginner programmers, guide them towards better-quality programs, and nevertheless
engage them meaningfully not only with graphics but with key computing content that
is not specific to the graphics domain. In other words, PyTamaro is claimed to hold the
potential for improved transfer.

The decomposition of problems into independent subproblems is key not only
to professional programming [247, 198, 182] but broadly to computational think-
ing [281] and problem-solving [31]. However, analyses of programs written by stu-
dents show that decomposition and, relatedly, abstraction are not practiced enough [181,
142]. Several of PyTamaro’s intended benefits involve these key concepts and skills.
Mutable state and “interface steps” (Section 4.1.2) in turtle graphics hinder effective
problem decomposition. State makes it harder to reason about a subproblem in isola-
tion: to understand what is the effect of a given piece of code, novices have to mentally
reconstruct the state of the turtle. Lewis [164] documented how both school- and
college-level students struggle with the turtle’s state, leading to issues that are hard to
debug. Compositional graphics approaches like PyTamaro eliminate this problem by
offering only pure functions that produce immutable graphics.

Treating graphics as values to be composed also facilitates visual decomposition
(Section 5.3). One may look at an image and identify its components (e.g., the roof
and floor in the trivial house example of Figure 3.1), and see how those visual com-
ponents compose into an overall image; this maps directly to how the subproblems’
programmatic solutions compose into an overall program. Learners may be guided
to visually decompose graphics and thereby learn how to decompose programming
problems and to compose the subprograms that solve them. Visual decomposition is
relatively straightforward when objects are immutable and one does not need to con-
sider components’ locations as coordinates.

140 10.3 We used a specific methodology for the randomized controlled experiment

10.3 We used a specific methodology for the randomized
controlled experiment

This section describes the overall design of our experiment, its context and participants,
the teaching interventions for the two experimental conditions, the surveys the partici-
pants answered before and after the intervention, the post-test, and finally our analysis
methods.

10.3.1 The procedure included four phases

We designed a randomized, between-subjects experiment with two conditions. In both
conditions, the participants worked through a programming tutorial consisting of four
“mini-lessons” with a Python graphics library. We selected PyTamaro in its English API
version as an example of a compositional graphics library (Section 3.5) and turtle
from Python’s standard library for turtle graphics (Section 3.4).

Since the study took place in a proctored computer laboratory and the participant
count was high, we arranged four identical sessions over two weekdays. Each session
consisted of four phases (Figure 10.1): a pre-survey, a teaching intervention phase, a
post-survey, and a post-test. The teaching intervention was different for the two groups,
as was part of the post-test (as explained below); the other phases were identical for
both. We allowed participants a maximum of 90 minutes to complete the entire session.

Pre-Survey Teaching Intervention Post-Survey Post-Test

Questions on Programming tasks using PyTamaro

4 Mini-Lessons usin: i
essons using PyTamaro|\ Questions on

Demographics Engagement and >
and Prior Experience 4 Mini-Lessons using Turtle I/ Perceived Learning

MCQs on
Programming

Programming tasks using Turtle

Figure 10.1. The timeline of each session.

Although some of the authors oversaw the sessions, they did not directly teach
anything to either group. Instead, the intervention took the form of a self-paced tu-
torial on a sequence of web pages. This decision was made in an effort to increase
the reproducibility of our findings and to eliminate biases in favor of our own library,
PyTamaro.

No Pre-Test? By design, our experimental setup did not include a pre-test. This
means we cannot compute learning gains, but the decision can nevertheless be jus-
tified both methodologically and pragmatically.

First, the differences between the two groups are ironed out because we assigned
the large number of participants to the two conditions randomly. This follows the

141 10.3 We used a specific methodology for the randomized controlled experiment

recommendations of Campbell and Stanley: “While the pretest is a concept deeply
embedded in [researchers’] thinking [...] it is not actually essential to true experimental
designs. [...] the most adequate all-purpose assurance of lack of initial biases between
groups is randomization” [38].

Second, a pre-test on programming could have brought about learning and mud-
dled our results. There is evidence that just taking a test again leads to better learning
outcomes [39]. We wanted to avoid that and instead study the effect of the teaching
intervention with a compositional graphics library like PyTamaro, checking for transfer
using the Turtle group as a baseline.

Third, the time constraints given by the context forced us to consider whether to
have a pre-test or a longer teaching intervention. We decided to dedicate a greater
fraction of the limited time of the experiment to the intervention.

10.3.2 We recruited participants from a CS1 course

We recruited participants from an introductory programming course (CS1) at a large
European research university that is not where PyTamaro originated and where Py-
Tamaro had never been used before. The course is held during the first semester of
undergraduate studies and targets non-majors in CS, especially students from other
engineering fields. The course uses Python and adopts what might be described as
a ‘typical imperative programming pedagogy’; it does not feature any graphics-based
programming.

None of the present authors are involved in teaching the course. The sessions took
place during the third week of the course, outside class hours. During the first two
weeks, the course had covered variables, basic I/0, assignment statements, simple
arithmetic, and if and while statements; for loops were introduced in the third
week. We organized the study very early in the course to limit prior programming
knowledge. We ruled out the possibility of running the study even before the course
start date: besides our participants having yet to begin their university path, it would
have been unfeasible to cover meaningful content in a short teaching intervention with
absolute beginners.

We advertised the study during the introductory lecture of the course. Participation
was voluntary. Upon completion (but irrespective of performance), the participants
were rewarded with a minor amount of course credit and a movie ticket.

A web platform provided all the materials and assessments and took care of ran-
domization and data collection in accordance with the local anonymization policies.
Each participant consented to the use of their anonymous data.

142 10.3 We used a specific methodology for the randomized controlled experiment

10.3.3 We asked participants a pre-survey

The participants answered a pre-survey with questions on three areas. First, we asked
standard demographic questions. Second, we gauged their prior knowledge asking how
many lines of code they had written before and whether they had ever programmed
graphics. Third, we surveyed their attitude towards programming with three Likert
items. The full questions are available in Appendix A.1.

10.3.4 We carefully designed a short teaching intervention

The teaching intervention for each group consisted of four “mini-lessons”. Each such
lesson took the form of a web page and consisted of text, executable snippets of Python
code, and a few illustrations. Some of the snippets were ready to execute as-is, but the
majority offered only a starting point for the participants to write their own code as
instructed.

10.3.4.1 There is an interplay between pedagogy and library

The lessons were designed purposely for this experiment. We tried to align the materi-
als for the two conditions closely, while still adopting a meaningful use of each library.
This was difficult, as there is an interplay between the tools one chooses and the peda-
gogy one may then adopt; each library is associated with a ‘typical’ pedagogy that tries
to match its strengths and minimize its weaknesses.

At one extreme, a library might make a concept inaccessible because there is no
support for it. For example, when graphics are not treated as values and functions are
essentially procedures, as in turtle graphics, it is impossible to construct nested calls
or other composite expressions with graphical values. At the other extreme, a library
might make it practically mandatory to teach a certain concept. PyTamaro has, in com-
mon use, a parameterless function (empty_graphic) and various non-commutative
functions that take two parameters (e.g., above), effectively forcing learners to deal
with these concepts.

Somewhere in the middle of the spectrum, a library may nudge pedagogy towards
certain concepts that are particularly compatible with it; for example, PyTamaro does
not mandate exploiting associativity and multiple ways to decompose a particular prob-
lem, but it invites teachers and learners to explore these topics. Conversely, a library
and its standard pedagogies may not particularly need a concept, but the concept may
still be introduced despite not being prominent.

We sought a balance within these constraints to keep the experiment fair, especially
avoiding favoring PyTamaro.

143 10.3 We used a specific methodology for the randomized controlled experiment

10.3.4.2 This is the content of the four mini-lessons

The lessons focused on using variables and functions, and on composition in general.
Broadly, they emphasized expressions, an essential concept even in non-predominantly
functional languages such as Python, but that is often neglected by traditional impera-
tive pedagogies [53] like the one adopted in our CS1 course.

PyTamaro’s approach is compositional and exploits expressions. It thus offers the
right opportunities to explain these concepts, which were only briefly introduced in the
first part of the CS1 course that took place before the experiment.

For both groups, we created materials in two natural language versions: one in
English, another in Finnish. Each participant was free to choose whichever of the two;
39 % used the English version. The identifiers in Python code were identical (in En-
glish) in both language versions.

The first lesson introduced the idea of a software library and showed how to call
library functions. For PyTamaro, functions’ parameters and return values were visual-
ized with a “plumbing diagram” similar to Harvey [112, Ch. 2]. For Turtle, animated
GIFs showed how the turtle executes a sequence of commands including movements
and rotations.

The second lesson guided both groups toward drawing something slightly more
interesting: the house from Figure 3.1. The CS1 course had not yet covered function
definitions, whose introduction from scratch would have required too much time. We
opted to provide both groups with functions such as square and triangle and focus
on their usage.

The third lesson explained how to draw a more complex graphic with two houses
and a wall in between, to whet the learners’ appetite for constructs that repeat compu-
tations. The PyTamaro group practiced combining variables and nesting, whereas the
Turtle group focused on the importance of the order in the sequence of commands.

The fourth and final lesson introduced repeated computation with f or loops, which
students had just started practicing in the CS1 course. Both groups drew a “street” of
five houses side by side: the PyTamaro group used the parameterless empty_graphic
function to initialize an “accumulator” variable (cf. zero in summation), the Turtle
group added an “interface step” to reposition the turtle at the end of each iteration.

Here we only briefly outlined the contents of the lessons. The complete version for
both groups is available in Appendix A.2.

10.3.5 Before the post-test, participants had to complete a post-survey

Immediately after the teaching intervention, we asked the participants to complete
another survey. This was to explore RQ3 by eliciting their opinions on the lessons

144 10.3 We used a specific methodology for the randomized controlled experiment

they just experienced, their level of engagement with programming in the domain of
graphics, and whether they had actually perceived to be learning programming.

We formulated four hypotheses for engagement and three for perceived learning.
The independent variables are (separately) the approach followed and the gender.

On engagement. There is a difference in...

H3a ... how interesting they think the tutorial was.
H3b ... how fun they find programming graphics.

H3c ... how much more they like programming graphics over programming in other
domains.

H3d ... how much they would like to learn more with graphics.
On perceived learning. There is a difference in...
H3e ... how much they feel they have learned about programming.
H3f ... how much they feel they already knew that approach to program graphics.
H3g ... how much they feel they already knew the programming concepts taught.

Each hypothesis corresponds to a seven-point Likert item in the post-test, answer-
able from “not at all true” to “completely true” (Table 10.7). The exact items as pre-
sented to the participants are shown in full in Appendix A.3.

10.3.6 The post-test consisted of nine questions

In total, our post-test had nine questions whose themes are listed in Table 10.1. The
post-test can be logically divided into two parts (even though this division was not
visible to the participants).

The first part was identical for both groups. It consisted of six multiple-choice
questions that relate to general programming concepts and RQ1, whose associate hy-
pothesis is the following:

H1 There is a difference in conceptual transfer between the group that followed a pro-
gramming tutorial with PyTamaro or with Turtle, as measured on programming
tasks outside the domain of graphics.

We operationalize transfer as participants correctly answering the six multiple-
choice questions.

145 10.3 We used a specific methodology for the randomized controlled experiment

Table 10.1. The themes of our post-test questions (Q1 to Q9) and how they map to the
hypotheses derived from our first two research questions.

H Post-Test Topic / Task

Q1 Use a variable more than once in an expression.

Q2 Nest function calls.
H1 Q3 Use a function with more than one parameter.

Q4 Call a parameterless function.

Q5 Exploit an associative operation for multiple solutions.

Q6 Determine the initial value of a loop’s accumulator variable.
H2a Q7 Tracing: Given a program, determine the size of the result.
H2b Q8 Writing: Create a program to draw a simple graphic.

H2c Q9 Modifying: Modify a given program that draws a graphic.

The second part of the post-test relates to our second research question, from which
we formulate three specific hypotheses:

After following a programming tutorial with PyTamaro or with Turtle, there is a dif-
ference in how learners...

H2a ... trace an existing program that creates a graphic.
H2b ... write a program from scratch to create a graphic.

H2c ... modify a given program that creates a graphic to adapt to new requirements.

10.3.6.1 Q1 to Q6 were multiple-choice questions on programming

The first six questions, Q1 to Q6, were multiple-choice questions unrelated to graphics.
The questions targeted expression-related programming concepts (function calls, vari-
able use, composition with operators or nesting) where the PyTamaro approach could
yield better transfer, given that these concepts were only explicitly practiced in PyTa-
maro’s teaching intervention. The Turtle group thus served as a baseline with respect
to these questions: the Turtle participants had to answer these questions on the basis
of whatever they had learned (or failed to learn) prior to the experiment.

Table 10.2 shows the alignment between the six multiple-choice questions and the
examples featured in the teaching materials for the PyTamaro group. In the learning
sciences literature, these are known as isomorphic tasks (or simply as isomorphs). We
will comment further on transfer and its challenges in the Discussion (Section 10.5.3).

146 10.3 We used a specific methodology for the randomized controlled experiment

The table only summarizes the stems. For completeness and reproducibility, the
questions with answer options appear in full in Appendix A.4.

Table 10.2. Each multiple-choice question targeted an abstract concept that should be
learned in the teaching intervention phase for the PyTamaro group and then transferred
to an isomorphic task in the testing phase (Figure 10.2). For compactness, the tasks from
the intervention (left) and the questions (right) are summarized here as single sentences.
The full questions and answers can be found in Appendix A.4.

Abstract Concept
Teaching Intervention with PyTamaro Post-Test (Both Groups)

Q1: The same variable can be used more than once in an expression.
beside(house, house) is valid is print (word + word + word) valid?

Q2: Function calls can be nested.

rotate (45, is sqrt (
rectangle (200, 100, green) sqrt (16)
) is valid) valid?
Q3: A function can have multiple parameters and their order matters.
above (ground_floor, roof) is subtract (10, 7)
is valid and different from valid and different from
above (roof, ground_floor) subtract (7, 10)?
Q4: A function can have zero parameters and calling it still requires parentheses.
empty_graphic() is valid is fake_random() valid?
Q5: Multiple valid decompositions: if ® is associative, a ® (b ®c)=(a® b) ® c.
beside (house, is combine("re",
beside(wall, house)) combine("stau", "rant"))
is equivalent to equivalent to
beside(beside (house, wall), combine (combine("re", "stau"),
house) "rant") ?

Q6: The initial value of a loop’s accumulator variable is the operation’s neutral element.
when combining graphics, when multiplying numbers,
initialize result to empty_graphic () should result be initialized to 1?

10.3.6.2 Q7 to Q9 featured programming tasks in the graphics domain

Unlike the questions on general concepts described above, the other three post-test
questions could not be identical for the two groups, as the questions involve program-
ming graphics and the two groups learned different approaches for that. We strove for

147 10.3 We used a specific methodology for the randomized controlled experiment

tasks that are as close to each other as possible and yet respect the idiosyncrasies of
each approach. Nevertheless, as the two groups’ programs are not identical, this part
of our results speaks not only of what the participants learned during the intervention
but also of the characteristics of “typical” code written using the two approaches to
program graphics.

Below, we consider each of the hypotheses related to RQ2 in turn.

10.3.6.3 Q7 was a tracing task

Question 7 asked participants to trace a program that draws four squares in a two-by-
two grid, as shown in Table 10.3. The participants were prompted for the dimensions
of the resulting drawing. An answer is considered correct only when both dimensions
are correct.

This question checks for differences in how well participants can trace a program
(hypothesis H2a).

Table 10.3. Q7: What are the width and height of the resulting drawing?

PyTamaro Turtle

pencolor("black")

square(10
a = square(10, black) d (10)
left (90)
b = square(10, black)
forward(10)
c = above(a, b) ,
right (90)
d = square(10, black)
square(10)
e = square(10, black)
forward(10)
f = above(d, e)
) square (10)
g = beside(c, f) ;
<ho aphic(g) right (90)
w_graphi
-8rap & forward(10)
left (90)
square (10)

10.3.6.4 Q8 was a program writing task

Question 8 was designed to address the second hypothesis related to RQ2: are there
differences between the two approaches when learners write a program from scratch?

148 10.3 We used a specific methodology for the randomized controlled experiment

The participants were asked to write a Python program to draw the simple graphic in
Table 10.4. The PyTamaro group were expected to create a hammer’s head and handle
with the rectangle function, to compose them together, and to rotate the composite
graphic. The Turtle group were expected to use a combination of movements and
rotations to draw a colored letter T.

Table 10.4. QQ8: Write a program to draw the given graphic. (One correct answer is
shown for each group.)

PyTamaro Turtle

T

head = rectangle(120, 30, black) pencolor("red")

handle = rectangle(40, 200, red) forward (200)
hammer = above(head, handle) backward (100)
rotated_hammer = rotate(45, hammer) right(90)
show_graphic(rotated_hammer) pencolor("black")
forward(250)

10.3.6.5 Q9 was a program modification task

Question 9 gave the participants a program that places five identical houses (like the
one in Figure 3.1) next to each other with a for loop. This program was the same as
the one featured in the fourth mini-lesson.

Successfully modifying the PyTamaro program requires identifying the code that
deals with the create-a-house subproblem, and updating the relevant arguments given
to square and triangle. In contrast, modifying the Turtle program also requires
the participant to position the turtle correctly before each loop iteration (e.g., editing
the call to forward). A difference in the success ratio on this task between the groups
would validate hypothesis H2c.

This task is meant to challenge the participants on a small scale with issues of
maintainability. The turtle approach inherently has one additional challenge because

149 10.3 We used a specific methodology for the randomized controlled experiment

Table 10.5. Q9: The participants were asked to double the dimensions of the houses.

PyTamaro Turtle

ground_floor = square(100, yellow) n_houses = 5
roof = triangle(100, 100, 60, red) for i in range(n_houses):

house = above(roof, ground_floor) pencolor("yellow")
n_houses = 5 square (100)
street = empty_graphic() pencolor("red")
for i in range(n_houses): left (60)
street = beside(street, house) triangle(100)
show_graphic(street) right (60)
forward(100)

the solutions to the subproblems, such as drawing a single house, cannot be composed
independently of their specifics (the width of one house).

10.3.7 We analyzed the data with different techniques

Our study is mostly quantitative. We ran a power test to compute an appropriate min-
imal sample size, seeking to keep false positives under 5% (a = 0.05) and false neg-
atives under 20 % (3 = 0.2). We speculated on a “medium” effect size (d = 0.5) in
either direction (two-tailed test). These constraints yielded a minimal sample size of
64 participants per group (cf. Table 2.4.1 in [60]); our participant count (145) exceeds
this minimum.

We use parametric tests, trusting the Central Limit Theorem to guarantee normality
on our large sample. We do not make assumptions about the direction of effects, or on
the equality of variances. We therefore compare means with two-tailed, independent-
samples t-tests without the equal-variance assumption—a.k.a. Welch’s t-tests.

Following widespread recommendations [249, 258], we report each p-value to-
gether with an effect size (Cohen’s d). Instead of performing corrections for mul-
tiple comparisons and then making claims of statistical significance, we consider p-
values and effect sizes together in an attempt to interpret our results’ real-world signif-
icance [249]. Below, we will note where a p-value is under the traditional threshold for
significance @ = 0.05 or where an effect size is at least “small” (d > 0.20 as suggested
by Cohen [59]).

Some of the questions in our pre- and post-surveys were on a seven-point Likert

150 10.4 These are the results of our experiment

scale. We treat the responses to these questions as interval data, while acknowledging
that there is no universal consensus on whether it is acceptable to do so [161]. (We
adopted a seven-point scale, as simulations show that using more points brings the
distribution closer to normal [283].) We thus use the parametric t-test for Likert items;
the non-parametric Mann-Whitney-Wilcoxon test would also be appropriate, but it has
been shown that the two tests have similar power for almost all distributions [68].

To complement our inferential statistics, we conducted semi-formal analyses of cer-
tain student responses (e.g., types of programming errors made), as described below.

10.4 These are the results of our experiment

As noted above, data was collected from four sessions spread over two weekdays. The
sessions had 38, 39, 36, and 32 participants, respectively, for a total of 145 participants.
The web platform we used automatically assigned participants to groups with equal
probability. We ended up with 70 participants in the PyTamaro group and 75 in the
Turtle group.

The PyTamaro group spent an average of 47 minutes on the whole session, which is
somewhat longer than the Turtle group’s 42 (d = 0.38, p = 0.02). We hypothesized
that this might be due to some participants’ prior exposure to programming with turtle
graphics (Section 10.4.1), so we separately checked only those participants who had
never programmed any graphics before; this reduced the difference to roughly three
minutes (47 vs. 44; d = 0.26, p = 0.19).

10.4.1 The pre-survey indicates that most but not all participants were
novices

The participants had an average age of 22 years (standard deviation 5.0). 71 partici-
pants (49 %) identified as female, 70 (48 %) as male, O as non-binary, 2 as other, and
the remaining 2 preferred not to disclose gender information.

The vast majority of participants (120, 83 %) reported to have completed the first
three rounds of exercises in the CS1 course they were taking. Pre-CS1 experience with
programming was uncommon, with some exceptions.

65 participants (45 %) reported having written O lines of code before CS1 (exclud-
ing any HTML and CSS). 33 (23 %) reported fewer than 50 lines in total, 33 (23 %)
fewer than 500, 11 (8%) fewer than 5000, and 3 (2 %) over 5000. When asked
whether they had ever written a program that draws graphics, 104 (72 %) partici-
pants answered no, 29 (20 %) yes, and the remaining 12 (8 %) were not sure. (We
did not directly ask the students which tools they used for programming with graphics,

151 10.4 These are the results of our experiment

but given the setting, we expect that Scratch is at the top of the list, and that some
would also have done turtle graphics; the compositional graphics approach is likely to
be very rare.)

Below, we use the term novice for participants who both had written fewer than 500
lines of code and had never programmed graphics before. By this measure, 107 par-
ticipants (74 %) were novices; they ended up evenly split across the two groups, with
53 novices assigned to PyTamaro and 54 to Turtle.

As expected, given the large sample and randomization, there was no significant
difference in self-reported prior programming knowledge between the groups (“lines
of code written” on a scale between 0 and 4; p = 0.59, d = —0.08).

The participants generally expressed positive attitudes to programming. On a
scale from 1 to 7, they strongly agreed that “it is useful for me to know program-
ming,” with an average rating of 6.21(%0.84). Moreover, they moderately agreed that
“programming is fun” (5.34 & 1.36) and did not agree that “programming is boring”
(2.25+1.27).

10.4.2 There were no differences in transfer to programming con-
cepts
We rated the answers to the six multiple-choice questions, Q1 to Q6, as either incorrect

(including “I don’t know”) or correct. Table 10.6 shows the results as percentages of
correct answers for each question.

Table 10.6. Proportions of correct answers on Q1 to Q6, shown first for all participants
and then for novices only.

Q1 Q2 Q3 Q4 Q5 Q6

PyTamaro% (N =70) 829% 80.0% 97.1% 57.1% 943% 68.6%

. Turtle% (N = 75) 81.3% 78.7% 93.3% 58.7% 90.7% 73.3%
Z Delta% 1.5% 13% 38% -1.5% 3.6% -4.8%
p-value 0.81 0.84 0.29 0.85 0.41 0.53
Effect size 0.04 0.03 0.18 -0.03 0.14 -0.10
PyTamaro% (N =53) 79.2% 81.1% 96.2% 56.6% 925% 60.4%
@ Turtle % (N = 54) 81.5% 741% 94.4% 51.9% 90.7% 70.4%
% Delta % 22% 71% 18% 48% 1.7% -10.0%
Z p-value 0.77 0.39 0.67 0.63 0.75 0.28

Effect size -0.06 0.17 0.08 0.09 0.06 -0.21

152 10.4 These are the results of our experiment

Overall, the participants fared decently well on these questions, which targeted
basic expression-related programming concepts: average correctness across questions
and groups was 80 %. Q3 (multi-parameter functions) and Q5 (equivalence of asso-
ciative solutions) were solved correctly by more than 90 % of participants. Q4 (calling
a parameterless function) and Q6 (initialize a variable for a loop) proved to be the
hardest, with aggregate averages of 58 % and 71 %, respectively.

The differences are negligible on all six questions. Only three questions meet the
very low bar of 0.10 for effect size: Q3 and Q5 in favor of PyTamaro and Q6 in favor
of Turtle. None of these differences are statistically significant.

As shown in the bottom half of the table, we also looked separately into novice
performance. Again, we found no major differences. The only effect size to pass the
“small effect” threshold was —0.21 in favor of Turtle on Q6, and none of these results
are statistically significant either.

We checked for a correlation between the time participants spent on the post-test
and their performance on the multiple-choice questions. However, this correlation was
effectively zero: r2 = 0.02.

10.4.3 Programming tasks had more diverse results

The last three questions in the post-test targeted the three facets of RQ2. We present
the results for each related hypothesis in turn in the next subsections.

10.4.3.1 There was a large difference on tracing

In the PyTamaro group, 90 % of the participants answered their tracing task correctly,
whereas only 37 % of the participants in the Turtle group correctly answered their
“comparable” task. The difference is statistically significant (p < 0.001), and the
effect size is very large (d = 1.29).

We also looked at novices separately and found a similar trend. 89 % of PyTamaro
novices answered correctly, compared to only 33 % for Turtle. Again, the difference
was statistically significant (p < 0.001) and the effect size large (d = 1.36).

10.4.3.2 Both groups performed well on a simple program writing task

Both groups performed rather well on this task. 59 out of 70 (84 %) in the PyTamaro
group solved the task correctly (i.e., the program does what was asked), as did 63 of
75 (84 %) in the Turtle group. Looking to understand the student programs in more
detail, we semi-formally analyzed the incorrect answers.

The eleven incorrect answers in the PyTamaro group can be characterized as fol-
lows. Three participants did not submit a solution; two tried to rotate the individual

153 10.4 These are the results of our experiment

graphics before composing them (which leads to issues related to the bounding box);
one supplied rotate’s arguments in the wrong order; one rotated the hammer in the
wrong direction; one had a typographical error; and three had a mix of other issues.

The turtle group had twelve incorrect answers: four participants mixed rotation
(e.g., left) with movement (e.g., forward); two drew the letter ‘upside down’; two
used wrong lengths; one colored the entire drawing in red; one used strings where
integers were called for (e.g., "250"); one drew an extra line; and one issue we were
unable to classify.

10.4.3.3 Both groups also performed well on a simple program modifying task

On this question, too, both groups performed rather well. 56 out of 70 (80 %) in the
PyTamaro group solved the task correctly, and in the Turtle group the number was even
higher: 66 of 75 (88 %). The difference is not statistically significant (p = 0.15), and
the effect size is small (d = —0.25).

In the PyTamaro group, several participants changed numbers incorrectly in at
least one place. In three cases, triangle’s angle argument was also doubled; in one
case only the floor was updated, and in one other case only the roof; one participant
multiplied numbers by 1.5 instead of 2; three other participants otherwise altered the
numbers incorrectly; and one tried to inject an extra instruction in the loop body. Four
participants did not submit a solution.

In the Turtle group, we expected to see several failures to update forward’s argu-
ment (as described in Section 10.3.6.5 above). However, of the nine incorrect solutions,
only two were in this category. The other wrong solutions were either not submitted
(four cases), had incorrect numerical arguments (two), or inadvertently redefined the
name square (one).

10.4.4 The post-survey reports engaged students, with some differ-
ences

Table 10.7 summarizes the post-survey results, first comparing the groups and then
looking at possible gender differences. Each claim, in order, tests the corresponding
hypothesis (H3a to H3g).

Overall, the participants liked the activities and found them useful for learning. Py-
Tamaro users were more inclined to say that they “had learned about programming con-
cepts from the lessons” (d = 0.36, p < 0.03). As expected, PyTamaro’s compositional
graphics approach was less familiar to the average participant than Turtle (d = —0.39,
p < 0.02). Moreover, we observed small effects in favor of PyTamaro with respect to

154 10.5 The experimental results need to be discussed

Table 10.7. Post-survey results divided by experimental group (left) and gender (right).

Claim (Likert scale from 1 to 7) |PyT. Tur. D d | Fem. Male D d
Engagement:

I found the preceding lessons inter- | 6.06 6.00 0.74 0.06 | 6.08 5.95 0.46 0.13
esting

Programming with graphics is fun | 6.01 5.83 0.33 0.17 | 597 5.86 0.56 0.10
I like programming with graphics | 4.44 4.56 0.66 -0.08 | 4.73 4.29 0.11 0.30
more than the text-based program-
ming we have done in the course

I would like to learn more about | 6.09 5.87 0.16 0.24| 597 6.00 0.85 -0.03
programming with graphics

Perceived learning:
I feel that I learned about program- | 6.07 5.64 0.03 0.36 | 5.82 5.85 0.88 -0.03
ming concepts from these lessons
I already knew beforehand how to | 1.64 2.29 0.02 -0.39 | 2.03 1.88 0.60 0.09
do graphical programming similar
to what was taught

I already knew beforehand all the | 5.26 5.33 0.83 -0.04 | 5.29 5.28 0.96 -0.01
general programming content

how much participants now enjoyed programming with graphics (d = 0.17) and their
desire to continue with graphics-based programming (d = 0.24).

Differences between female and male students were minimal, with one exception.
The participants’ CS1 course relies on traditional programs with text-based console
I/0. After the intervention, female participants were more likely to say that they like
programming with graphics more than what they have done in CS1 (small-to-medium
effect, d = 0.30).

Participants across groups largely agreed that “programming with graphics is fun”
(average 5.9). This item is not identical to our more generic “programming is fun” item
on the pre-test (average 5.4). With that caveat in mind, we note that there is a sta-
tistically significant difference between these within-subjects ratings, with a moderate
effect size (d = 0.46, p < 0.001).

10.5 The experimental results need to be discussed

In summary, we found that (1) both graphics-based approaches—compositional and
turtle—engaged students and led to high ratings of perceived learning; (2) both groups
performed uniformly well on the programming tasks in the post-test, except for a sub-

155 10.5 The experimental results need to be discussed

stantial difference in code tracing; and (3) the groups performed equally on post-test
questions on conceptual knowledge. Sections 10.5.1 and 10.5.2 below elaborate on
the first two points, respectively. In Section 10.5.3, we discuss the third point in detail
as we consider both the factors that may have affected our specific result and, more
broadly, the methodological issues that complicate studies such as ours.

10.5.1 Student engagement was high

Both the PyTamaro group and the Turtle group reported high levels of engagement
with programming using graphics. They expressed enthusiasm for it, thought it was
more likable than traditional non-graphics-based programming, and felt that they had
learned programming concepts by engaging with it (Section 10.4.4). Our study thus
adds to the body of evidence (Section 2.10) on the value of graphics in introductory
programming education. Moreover, PyTamaro’s compositional graphics approach ap-
pears to yield engagement levels at least on par with the venerable and widely popular
turtle approach.

Learner diversity is one of the motivations to introduce graphics in CS1, and ped-
agogies such as media computation have had positive effects on gender balance [105,
108]. Engaging and retaining diverse students is also an explicit goal for PyTamaro,
and two of our results are potentially significant in this light. First, almost half (49 %)
of the volunteering participants identified as female, which is substantially higher than
the proportion of female students in the CS1 course (ca. 35 %). We had advertised the
study as “learning to program graphics in Python,” which may have piqued female stu-
dents’ interest in particular. (It is known that there are differences in how female and
male students value different domains in programming tasks [173].) Second, female
participants especially agreed with the post-survey claim that they prefer programming
with graphics to text-based programming (average 4.7 vs. male students’ 4.3). This ef-
fect was of a small-to-moderate size but did not reach statistical significance (d = 0.30,
p =0.11). Our experiment was not designed to provide data on long-term impact, but
our results do suggest that choosing graphics as a domain for introductory program-
ming may have an immediate impact on stimulating female students’ interest.

10.5.2 Differences between groups were scarce, with one exception

Overall, the two experimental groups showed comparable results on the post-test tasks.
We start the discussion with the notable exception of the performance difference on the
tracing task, which tested hypothesis H2a.

156 10.5 The experimental results need to be discussed

10.5.2.1 The PyTamaro group did better on their tracing task

One of the goals of compositional graphics approaches is to encourage decomposing a
problem into independent subproblems so that one may reason about each subproblem
in isolation. This is harder to achieve with turtle graphics, as the turtle carries a state
that includes its position and heading (Section 3.4). Tracing a turtle program requires
one to track the state at each step through a sequence of commands.

While designing the tracing question (Section 10.3.6.3), we considered several as-
pects in an attempt to ensure a fair comparison. First, both groups used a square
function they had already practiced during the intervention. Second, the square func-
tion we gave the Turtle group “behaves nicely”: it leaves the turtle facing in the same
direction. Third, the PyTamaro code is suboptimal in several ways, compared to the
code quality one would typically have with PyTamaro. (Specifically: Each variable
is used only once. The square function is called four times merely to match the four
calls in the Turtle program. Similarly, repetition of the first three lines could have been
avoided by reusing c. The side length is not given a meaningful name; the literal 10 is
passed directly as an argument. All the variable names are devoid of meaning.)

Our participants performed vastly better on the PyTamaro tracing task than on
the Turtle task. This result comes with caveats. For one thing, there was only one
tracing question for each participant. For another, the two groups traced different
programs. Although we have argued that the two programs are, in a sense, comparable,
our reasoning may be called into question. Nevertheless, the very large effect size in
favor of PyTamaro (Section 10.4.3.1) suggests that tracing typical turtle graphics code
requires more effort and care compared to typical compositional graphics code, even
for non-novices. It is important to bear in mind that this finding speaks partially—
and perhaps mainly—of the nature of the two programs and their associated learning
approaches rather than between-group differences in learning gains; however, that
finding, too, is relevant to instructors that employ graphics-based pedagogies.

10.5.2.2 Other differences were largely absent

We found no major differences between the groups on the code-writing task or the
code-modifying task (Sections 10.4.3.2 and 10.4.3.3). By and large, both groups per-
formed rather well on these tasks. Despite this result, the possibility certainly remains
that the two approaches to programming graphics lead to differences in students’ pro-
gramming skills. However, it may be that observing such differences would require a
context where learners practice with a graphics library longer (e.g., over several weeks)
and can then demonstrate their abilities on significantly larger exercises. For us, ar-
ranging for such an experiment was not feasible in practice; it would have also reduced

157 10.5 The experimental results need to be discussed

the degree of control over the study participants, likely introducing new confounding
factors.

Similarly, we observed no substantial differences between the groups’ performance
on the six post-test questions about expression-related programming concepts (Sec-
tion 10.4.2). Again, the short length of the intervention may have contributed, but
there are many other factors worth considering as well, as we discuss below.

10.5.3 The multiple-choice questions were designed with transfer in
mind

Certain programming concepts are prominent in the compositional graphics approach
that PyTamaro supports; these include nested function calls and other composite ex-
pressions, functions that take various numbers of parameters, and return values, to list
a few. In the absence of a validated assessment instrument that focuses on these con-
cepts, we designed an ad hoc one: questions Q1 to Q6 in our post-test (Appendix A.4).
We applied this instrument in hopes of showing conceptual transfer from PyTamaro to
a non-graphical domain (using turtle graphics as a baseline) but did not find evidence
of it.

When designing and applying such an instrument, there are many decisions to
be made. Below, we discuss a few of them in order to explain our design, reflect on
possible reasons for the lack of observed differences between groups, and, perhaps, to
highlight some pitfalls to others engaged in evaluative computing education research.

10.5.3.1 We aimed to stay clear from “Teaching to the Test”

We wanted at least part of the post-test to be identical for both groups. One reason for
this was to enable direct comparisons between the groups on the same questions.

Identical questions do not guarantee a fair comparison, however. An inherent prob-
lem in evaluating educational innovations is that researchers may unwittingly favor a
particular group—especially if they designed the innovation being studied. At an ex-
treme, one group might be taught precisely what the post-test asks. Crichton and
Krishnamurthi recently reflected on this while designing interventions to improve a
textbook alongside assessments to evaluate the interventions: “If an intervention is too
tailored to the specific question being targeted, then learners are likely not forming a
robust mental model. We managed teaching-to-the-test by ensuring that interventions
did not change the textbook to trivialize the problems under question, e.g., by adding
the answer verbatim to the book” [65].

Not providing the exact answers to one group only is a start, but insufficient. If
one group’s intervention materials closely match the post-test, any success on the test

158 10.5 The experimental results need to be discussed

might be mere memorization. In the words of Perkins and Salomon, “any learning
requires a modicum of transfer. To say that learning has occurred means that the person
can display that learning later” [206]. In an attempt to capture genuine learning, we
designed conceptual questions that were “at a distance” from what the participants
experienced during the intervention. We achieved this using a different domain than
the graphic one which was used in the teaching materials, staying clear from the risk
of “teaching to the test”.

10.5.3.2 We studied transfer to isomorphic programs

Within the constraints of a short experiment, one can hardly expect far transfer to
very dissimilar problems; there is plentiful evidence that far transfer is a lofty goal in
general (e.g., [71, 139]). We instead aimed to find near transfer, asking the participants
to answer questions about programs that are not in the domain of graphics but that are
isomorphic with what the PyTamaro group was previously taught in that domain.

The diagram in Figure 10.2 illustrates how transfer to an isomorph doesn’t happen
“directly”. Instead, learners are supposed first to acquire an “abstract” understanding
and then to apply it in a new context.

Teaching Phase Abstract Concept Testing Phase
/ 5

>

Concrete Task in ContextA - — - — — = — — — — — — — » Concrete Task in Context B
transfer to isomorph

Figure 10.2. Learners are exposed to a concrete task during the teaching phase. Dur-
ing the testing phase, they are assessed on an isomorphic task in a different context.
Achieving transfer requires acquiring an understanding of the abstract concept.

We designed the multiple-choice questions with this idea in mind, focusing on the
“abstract concepts” that PyTamaro was hypothesized to teach (cf. Table 10.2, that
shows the isomorphisms between the PyTamaro intervention and the post-test).

10.5.3.3 Transfer, even to isomorphic tasks, can fail

Contrary to our hypothesis H1, the PyTamaro group, despite having practiced on tasks
isomorphic to those in the post-test, did not perform better than the Turtle group. It
is well known that transfer is not easy to achieve or to demonstrate through research.
The result of this study provides further evidence that programming is no exception in
this regard, even when aiming only for near transfer to isomorphic tasks.

159 10.6 There are threats to the validity of our study

One reason why even near transfer often fails is that learners—novices especially—
may fixate on the surface characteristics of a task and consequently fail to draw the
appropriate connections between tasks and abstract from them. This challenge has
been noted, among others, by Perkins and Salomon, who wrote: “Subjects usually do
not recognize the connection between one isomorph and the other and hence do not
carry over strategies they have acquired while working with one to the other” [206].
Given that our post-test questions were in a different domain, albeit isomorphically so,
it is debatable whether we truly tested for near or far transfer.

Transfer is likelier if instruction highlights the relationships between concrete tasks
and abstract concepts. For instance, Reed et al. [220] discovered that many people
would not transfer from the ‘Jealous Husbands” problem to the similar “Missionary—
Cannibal” without explicit instruction. Our teaching interventions did not consistently
and explicitly highlight opportunities for transfer, which may have affected our re-
sults. An improved intervention could embrace more deeply the idea of “semantic
waves” [177, 66] and guide learners from the abstract to the concrete and then back
to the abstract, highlighting the relationships between the two levels of abstraction.

10.6 There are threats to the validity of our study

10.6.1 Students’ prior knowledge affects the results

As discussed in Section 10.3.1, the lack of a pre-test is justifiable given the randomiza-
tion and the large sample, and even has some advantages. Nevertheless, this decision
does preclude us from computing “learning gains”, and there remains the issue of how
prior knowledge affected our participants’ performance.

We targeted students who did not have much experience, but not all participants
were novices. However, even with only novices included in the analysis, the differences
between the two groups were minor. One plausible and perhaps likely explanation for
this is that the participants’ performance was sufficiently influenced by what they had
previously learned in CS1 that any effect of either group’s short intervention on the
post-test is negligible in comparison.

The participants’ CS1 course adopts a “typical imperative” view of programming
(loops, etc.) that is more closely attuned to the turtle approach than to PyTamaro’s
compositional graphics approach, as the latter instead emphasizes the compositional
power of expressions that comes with “functional” programming (nested calls, etc.).
We speculate that this might have introduced a slight bias in favor of the Turtle group.
Similarly, the Turtle group could have been advantaged by prior experience in “com-
putational thinking” or “problem solving” activities that do not involve programming

160 10.6 There are threats to the validity of our study

as such but that match the spirit of turtle graphics (e.g., [471]); such activities are not
uncommon in secondary education.

10.6.2 The short study duration limits what can be observed

The experiment was designed to allow participants to work through a programming tu-
torial with graphics for one hour. As noted in the discussion, the short duration enabled
controlling certain variables (e.g., avoiding participants discussing the lessons’ content
between groups, having the exact teaching materials available for reproducibility), but
also significantly limited opportunity to observe effects that are more visible in the
medium and long term.

10.6.3 There are threats related to data collection and the instrument

Engagement and prior experience were self-reported and potentially subject to self-
report bias.

The items for our surveys and post-test were constructed ad hoc and not validated.
Several post-test items were in the multiple-choice format, which can be problematic if
the options are not paired with explanations [50]. We mitigated this by (1) including
an “I don’t know” option, (2) writing longer explanations as part of the options that
participants had to pick, (3) administering the instrument beforehand to four students
(extraneous to the experiment) as a small-scale pilot study, which helped to refine and
clarify the questions.

Nevertheless, our items may have been too “guessable”. Although no specific com-
ment was made by the participants during the experiment sessions, we do not possess
data that would confirm the absence of misinterpretations of the questions’ statements
or options.

The items on tracing, modifying, and writing code were designed to be “compara-
ble” between groups but not identical.

10.6.4 Generalization is limited

All our participants come from a single university course, albeit one with students from
a wide variety of engineering majors; we cannot comment on how our results might
generalize to other groups. Moreover, our subjects were volunteers who received a
small compensation for participating, which may have introduced a selection bias.

161 10.7 To conclude, we did not find evidence of better transfer with PyTamaro

10.6.5 Students may have some response biases

We solicited answers from participants both in the pre- and the post-survey. Participants
did not engage with a “teacher”, but may still have skewed their answers due to the
social-desirability bias. In particular, the pre-survey asked participants to voluntarily
disclose their gender, which is known to possibly affect their behavior (for example
with respect to the stereotype threat).

10.6.6 We have an authorship bias as we are PyTamaro’s authors

We preemptively compensated for an authorship bias when designing the experiment,
disadvantaging our own library in several ways. (1) We placed PyTamaro in an imperative-
style CS1 that does not play to PyTamaro’s strengths. (2) We used animated (thus
possibly slightly more engaging) visuals only in the Turtle materials, as we thought
they were needed to provide a high-quality explanation of the turtle’s state changes
over time. (3) We introduced to both groups the idea of a loop to accumulate a value,
despite it not normally being covered in Turtle pedagogy, as we felt it necessary to
fairly prepare all participants for one question on the post-test. (4) We wrote the trac-
ing question in a style far from optimal for PyTamaro programs (Sections 10.3.6.3
and 10.5.2.1). (5) We took care of setting up the turtle’s drawing environment (e.g.,
providing a large enough canvas).

Ultimately, we cannot rule out an authorship bias. For transparency, the complete
materials used in the study are available as appendices.

10.7 To conclude, we did not find evidence of better trans-
fer with PyTamaro

This chapter presented a randomized, controlled experiment on the use of graphics
in teaching programming to beginners. We found that both a compositional graphics
approach enacted using the PyTamaro library and a more traditional turtle graphics
approach engaged student programmers; female students might find such approaches
particularly engaging. We did not find evidence of better transfer from a short PyTa-
maro session to a post-test on isomorphic tasks outside the graphics domain, compared
to the Turtle session which did not feature those tasks. Overall, there were few differ-
ences between the two experimental groups. As an exception to that trend, beginners
appear to trace compositional graphics code more accurately than “comparable” turtle
graphics code.

We have outlined several alternative—or complementary—explanations for our

162 10.7 To conclude, we did not find evidence of better transfer with PyTamaro

findings. Further research is needed to test our speculations as well as the generaliz-
ability of our results. Future research should look into interventions longer in duration
than what we were able to investigate here.

Chapter 11

We Conducted a Case Study With High
School Teachers

This chapter describes a multiple-case study conducted with five Swiss teachers who
adopted PyTamaro to teach the programming part of the mandatory informatics course
in high schools.

11.1 Swiss teachers adopted PyTamaro in different con-
texts

PyTamaro has been used by its authors as part of multiple teacher training programs
throughout Switzerland, both as a way to teach programming for those teachers with-
out prior knowledge of programming and to strengthen the pedagogical content knowl-
edge for everyone.

As the authors of PyTamaro, we were inevitably partial to its adoption in classrooms
after the training programs concluded. Nonetheless, each teacher made the final deci-
sion freely. Some eventually opted to use it in their curricular activities. To understand
the context in which this decision has been made, we need to briefly illustrate the rel-
evant bits of the educational system in Switzerland.

Switzerland consists of 26 cantons, which are member states of the Swiss Con-
federation. Cantons have significant autonomy in organizing education. Within some
general constraints imposed at the federal level, each canton has room to decide when
and how much each subject is taught. Consequently, there is considerable variation in
both the school years (also known internationally as “grades”) during which informat-
ics is taught, and the number of hours devoted to the subject. Each canton also draws
up its own curriculum, which contains guidelines for the specific topics expected to be

163

164 11.2 The pedagogy and the library are interconnected

covered in each subject. The level of detail at which these topics are specified and the
level of prescriptiveness again varies from canton to canton.

Each canton has several high schools, and each school has a certain degree of au-
tonomy to develop its own education. Typically, each school defines for each subject its
own school-level curriculum, which is based on the cantonal-level curriculum. For the
recently introduced informatics course, this process is mostly still ongoing, as the can-
tonal curricula are also expected to be revised after being tested with students during
the first years.

Finally, each individual high school teacher has a significant degree of autonomy
in deciding how to implement the school-level curriculum.

This broad autonomy helps explain why five teachers, working in five different
schools across multiple cantons, have diverse experiences, interests, needs, and goals.
From afar, all five teachers “adopted PyTamaro to teach programming”. But a closer
look reveals rich and meaningful differences in how this adoption actually took place.
The case study we describe here investigates this diversity.

11.2 The pedagogy and the library are interconnected

Developing the teaching materials for the experiment described in Chapter 10 revealed
an intricate interplay between an educational library and the pedagogy built around it.

The design of a library nudges the users towards a certain style of programming.
For example, adopting PyTamaro means favoring expressions over statements, avoiding
mutability as well as sophisticated features of the programming language, and defining
abstractions early (Chapter 5).

However, there is still a lot of freedom in the pedagogical design of an introductory
programming course. At one extreme, a teacher might embrace the library completely
and, say, never introduce any language feature that is outside the small set used by
PyTamaro. At the other extreme, a teacher could “fight against” the philosophy of the
library: for example, the definition of functions could be significantly delayed on the
grounds that it is challenging for novices [130].

11.3 Prior work investigated when and how educators adopt
innovations

A recent international working group reviewed how teaching innovations get adopted,
with a specific focus on Computer Science [253]. They characterized innovations as
being instructional technology, such as hardware or software used in teaching, curricu-

165 11.3 Prior work investigated when and how educators adopt innovations

lar innovations, which refers to changes in the actual course content (including which
topics are taught and in which sequence), and pedagogical innovations, which include
new instructional strategies.

Pedagogical innovations may be the easiest to adopt, as teachers normally have a
high degree of autonomy over the pedagogy to be used, whereas external constraints
may dictate the topics to be covered in the curriculum. Even innovations of this kind
are not easy to disseminate, and their propagation does not necessarily indicate that
the innovation is enacted as intended. Borrego et al. [29] studied how engineering
faculty implemented 11 “innovative” instructional strategies, such as think-pair-share,
problem-based learning, or peer instruction. Strategies were characterized by a num-
ber of components to measure the “fidelity of implementation”, in an attempt to cap-
ture how closely classroom practice reflects the original strategy. Overall, there was
significant variability depending on the specific strategies: between 11 % and 80 % of
instructors spent time on all the required components for a given strategy.

Curricular innovations do not have it easier. Levy and Ben-Ari [162] noted that
research-based pedagogical tools have a hard time being adopted by teachers in actual
classrooms, despite the hopes of the authors of these software tools. To better under-
stand the reasons behind this common failure, they conducted a phenomenographic
study with high school teachers who received training on how to use Jeliot, a tool they
developed to visualize Java programs. The study revealed that teachers experienced
using the tool in radically different ways: from using it frequently and integrating it
deeply within their pedagogy, to a sporadic use that may even conflict with the rest
of the materials. When developing a pedagogical innovation, the authors recommend
paying attention to its integration into the curriculum, as reflected in the materials,
and to ensure that the teacher remains “central” in the class.

In a landscape where changes are rare, there are also some success stories. In
2005, a two-year college in the USA successfully adopted the “Media Computation”
curriculum, which was developed at a university [255], leading to improved student
retention. Ni et al. [190] interviewed eight instructors who attended workshops that
also featured the “Media Computation” and adopted or expressed interest in adopting
it. External factors, such as the limited freedom to change the content of a course, hin-
dered the adoption, but one instructor also reported that an initial experiment with the
innovative curriculum was successful in terms of student engagement Ni et al. [190].

Fincher et al. [87] collected 99 stories of computing educators who decided at
some point to modify their teaching practices, for example by adopting an innovative
tool. Nearly all stories reported a change that occurred in a local context, without
drawing from outside sources, without conducting an active search for new practices
or materials. Personal interactions with peers were a driving force. Fincher et al. [87]
called on educational developers and researchers to overcome a naive model of how

166 11.4 We conducted a case study on how teachers adopt PyTamaro

teachers adopt tools, hoping that educators conduct a systematic search for innovations.

11.4 We conducted a case study on how teachers adopt
PyTamaro

Using the taxonomy introduced above, the PyTamaro approach can be best described as
a curricular innovation. While the approach leverages some software tools (the Python
library itself and the web platform with its extensions), these are only in service of—
and tightly integrated with—the curricular approach.

11.4.1 Five teachers represent our five cases

Over the last two years, we have been directly working with a number of high school
teachers who decided to adopt PyTamaro as part of the mandatory informatics course.
This kind of direct connection gave us privileged access to teachers who were willing
to integrate an innovation into their teaching. As Section 11.3 discussed, this is quite
rare and presented us with a unique opportunity.

We identified six teachers, each of whom would serve as a case in our study. The
selection of the cases aimed to ensure representation of different contexts. We knew
that each teacher was working at a different school, some were using the PyTamaro
Web platform and others were not, some were exploiting the unplugged TamaroCards
approach to introduce programming and others were not.

We asked teachers to share with us their teaching materials in the original version,
regardless of format: slides, notes, handouts, exams, curricula and activities on the
PyTamaro Web platform were all welcome. We also invited teachers to an interview of
roughly 90 minutes. To compensate their efforts, in addition to the insights on their
materials they could gain in the interview, we promised teachers a monetary reward
equivalent to approximately two hours of their salary. This study was approved by the
University Ethics Committee.

Of the six teachers we contacted, five accepted our invitation and are part of this
case study.

11.4.2 We investigated why teachers adopt PyTamaro and how they
translate the approach in their teaching materials

Our investigation was driven by three research questions:

RQ1 What are the factors driving teachers to adopt PyTamaro to teach programming?

167 11.4 We conducted a case study on how teachers adopt PyTamaro

RQ2 How are teachers translating the principles embodied by the PyTamaro approach
into their teaching?

How are problem decomposition and abstraction (e.g., definition of func-

tions, use of the Toolbox) taught?

How is repetition (e.g., loops) introduced?

How are language features (e.g., nested expressions, lists, methods) used?

How is the unplugged approach with TamaroCards used, if at all?

What other noteworthy aspects stand out in the teaching materials?

RQ3 What is the experience of students with PyTamaro (e.g., need of learning function
definitions early, restrictions in the drawable graphics)?

11.4.3 We collected two different sources of evidence

Yin [284] describes six sources of evidence used in case studies: documentation, archival
records, interviews, direct observations, participant-observation, and physical artifacts.

As part of this case study, we decided to collect two of these: documentation and
interviews.

We did not collect evidence through direct observations or by becoming an observ-
ing participant. Watching the teachers and the students’ reactions in real time would
have provided unfiltered observations. On the other hand, logistical constraints made
it unfeasible to observe an entire year of teaching across multiple schools. On top of
that, reflexivity also poses a problem: because students could have behaved differently
just knowing that someone was observing and capturing their behavior. Finally, being
an observing participant in this context would have required us to become the teacher
of those students. This has all the issues described above, being even more time inten-
sive, but would have also fundamentally manipulated the results, given that we would
be in control of the various aspects of teaching, including the creation of the materials
and their delivery to students.

We now discuss in detail the strengths and weaknesses of the two sources of evi-
dence we decided to collect, selecting the properties described by Yin [284] that are
relevant to our specific scenario.

11.4.3.1 Teaching materials serve as documentation

We asked each teacher to share their teaching materials unaltered, exactly as they had
been used in class. Yin [284] describes this source of evidence as “documentation”,

168 11.4 We conducted a case study on how teachers adopt PyTamaro

with four key strengths. First, teaching materials are stable: we can review them mul-
tiple times and they will contain exactly the same information. (This may seem a trivial
property, but it is not a given with other sources of evidence.) Second, documentation
is unobtrusive: it has not been created for the specific purpose of the case study and
is therefore not ad hoc. Third, teaching materials are highly specific: they contain the
exact wording and code fragments that students have been exposed to, down to the
level of individual tokens, enabling a fine-grained analysis that would be impossible
when only discussing code at a high level. Fourth, the teaching materials we collect
are broad, because they cover one or two entire school years.

Our privileged relationship with teachers, alongside whom we worked for a long
time, allowed us to eschew two main weaknesses of this source of evidence. Documen-
tation can be difficult to obtain, and access may be deliberately withheld. We believe
that these two factors may be key reasons behind the lack of this in-depth analysis of
teaching materials actually used by teachers in computing education research.

At the same time, we have to acknowledge two inherent biases for this source
of evidence. There is a reporting and selection bias, which reflects possible biases in
teachers who voluntarily or involuntarily did not share the entirety of their materials.
For our study, this may manifest in two ways. First, teachers may not be sharing an
entire type of materials, such as exams, on grounds of their confidentiality. Second,
they may be excluding specific parts of the materials, such as a code example that did
not work well with their students, or a slide for which they realized later on contains
a mistake that they are unwilling to make public.

11.4.3.2 Individual interviews are targeted and insightful, but suffer from biases

Yin [284] describes two key properties of interviews, which we exploited in our study.
First, interviews are targeted, because the specific questions asked can focus on the re-
search questions that are of interest. We were able to ask specific questions on topics of
interest, such as how teachers dealt with function definitions, as an operationalization
of the big ideas of abstraction and problem decomposition. Second, interviews can be
insightful: a rich source of explanations and personal views. For example, interviews
allowed us to investigate the reasons that led a teacher to create a slide in a certain
way, or to explain a concept in a specific moment of the school year. Personal views
included gathering the teachers’ perception of their students on how they reacted to a
specific didactic moment, what seemed to elicit their curiosity, and what remained a
struggle.

On the flipside, interviews are clearly subject to a number of important biases.
First, there are question and response biases. Questions may be poorly articulated and
not well understood by the teacher, or they may be partially “leading questions” to

169 11.4 We conducted a case study on how teachers adopt PyTamaro

prompt or encourage the answer that the study authors want to hear. Second, and in a
certain sense dual of the previous point, there may be a reflexivity bias. The teacher be-
ing interviewed may simply default to saying whatever the interviewer wants to hear.
This bias is particularly relevant for our study, in which the interviewer is the same
person who developed the teaching approach being studied. An overall friendly rela-
tionship between the interviewee and the interviewer may exacerbate this problem,
as the teacher may not want to compromise the generally positive attitude by saying
something that they may perceive as not liked. Third, some of the teachers’ responses
may suffer from poor recall and contain inaccuracies. This problem is also relevant for
our study, which straddles three different moments in time: when a teacher created
their materials, when the lessons were actually held with students, and when the in-
terview was conducted. The time in between these moments varied for each teacher,
but could generally be described as ranging between a couple of months and a year, a
period long enough for a person to confuse the memories.

11.4.3.3 Our interviews also included a small assessment part

None of the teachers who participated in the study have an extensive background in
Computer Science, such as holding a Master’s degree in Computer Science or Infor-
matics. All the teachers attended courses in the national training program to become
qualified to teach informatics. However, their backgrounds and interests differ, and it
should thus not be surprising that their level of programming maturity varies as well.

Therefore, after a “warm up” section dedicated to the teacher’s background, we
included in each interview a small assessment component. We asked teachers to give
feedback on two small PyTamaro-based programs, pretending that they were programs
written by their students. This component was designed to probe their understand-
ing of immutability, abstraction, and decomposition; core skills connected with the
principles embodied by PyTamaro. A first program redefines a name multiple times,
to probe the understanding of immutability. A second program contains identical or
nearly identical expressions that are not abstracted into constants or parameterized
functions, to probe the understanding of decomposition and abstraction.

We include an analysis of the teachers’ responses to this assessment part in the
description of each case. This allows readers to better put into perspective all the other
answers given by the teacher in the interview, as well as their teaching materials.

11.4.4 Multiple sources of evidence enable triangulation

Yin warns against the risk of using one single source of evidence to analyze a case.
While there have been case studies conducted only with one source of evidence, it is

170 11.4 We conducted a case study on how teachers adopt PyTamaro

understood that the first principle to increase the reliability of the findings is to use
multiple sources of evidence [284]. For our specific study, we wanted to avoid relying
only on the interviews or the teaching materials. We already discussed in Section 11.4.3
the limitations of each specific source of evidence.

Using two or more sources of evidence achieves what is known as triangulation. The
prefix tri suggests that triangulation is often related to three different perspectives.
It can be argued that this could be better called a form of cross-validation, or cross-
checking (this terminology is more standard, for example, in the machine learning
community). With this distinction in mind, we will keep using triangulation to follow
the tradition of case study research [95].

Patton [200] describes four types of triangulation. An evaluation study can use
multiple data sources, multiple evaluators, multiple perspectives on one dataset, and
multiple methods. When we refer to triangulation in our study, we are using the first
of these four types. We analyze and integrate our two data sources, teaching materials
and interviews to achieve data triangulation.

An important limitation that needs to be pointed out upfront is that not every aspect
is covered by both sources of evidence. For example, when a teacher describes what the
effects of a specific part of their materials on their classes were, we can only know what
happened from their account during the interview, without having a way to confirm it
independently.

11.4.5 We followed a protocol for the interviews

Yin [284] recommends maintaining a case study protocol to increase the reliability of
the case study. A protocol should identify the main research questions, which we stated
in Section 11.4.2, and describe the high-level questions that guide the interviewer in
following the line of inquiry during the interviews. Note that these questions do not
always match the exact questions as they are verbalized during the interview. “Case
study interviews will resemble guided conversations rather than structured queries.
Although you will be pursuing a consistent line of inquiry, your actual stream of ques-
tions in a case study is likely to be fluid rather than rigid” [284]. Some researchers
classify interviews into “structured interviews”, when a protocol or set of questions is
rigidly followed, and “unstructured interviews”, when no set of questions is defined
in advance [275]. Under this perspective, our methodology could be best described
as following “semi-structured interviews” [69]. The high-level set of questions was
defined in advance. Some of those questions can be verbalized as is during the inter-
views, while others lead to more specific, contextualized questions adapted during the
interview to the situation at hand.

171 11.4 We conducted a case study on how teachers adopt PyTamaro

11.4.5.1 Some questions focused on the teacher

* How long have you been teaching in general? How long have you been teach-
ing programming? How many school years with PyTamaro? Which courses
(mandatory, elective)? Which students (grades, age)?

* Where and how did you learn programming? Did you attend any regular or ad
hoc study programs?

* Give feedback on this PyTamaro program as if it were a solution produced by
one of your students. Why do you think that aspect is problematic or not?

- Listing 23 is a program that draws the International Red Cross emblem of
Figure 5.1.

- Listing 24 is a program that draws a pair of green eyes, as shown in Fig-
ure 5.5.

background = rectangle(320, 320, white)
arm = rectangle(200, 60, red)

arm = overlay(rotate(90, arm), arm)
flag = overlay(arm, background)
show_graphic(flag)

Listing 23. Example program using PyTamaro that reassigns to a variable.

diameter = 200

small black = ellipse(diameter / 4, diameter / 4, black)
big green = ellipse(diameter / 2, diameter / 2, green)
eyes = beside(overlay(small_black, big green),

-~ overlay(small black, big _green))

show_graphic(eyes)

Listing 24. Example program using PyTamaro with opportunities for abstraction.

11.4.5.2 Other questions investigated the choice of graphics as a domain and Py-
Tamaro

* Why did you adopt PyTamaro over other graphical approaches?

172 11.4 We conducted a case study on how teachers adopt PyTamaro

* Do you use PyTamaro “alone”, in combination with other approaches for graph-
ics, or in combination with other domains?

* What are the reasons behind your selection of a certain domain (e.g., graphics,
math)?

* What are the challenges in introducing a teaching innovation like PyTamaro?
(Interviewer remark, not mentioned in the interview: challenges could include col-
leagues not adopting it, textbooks already in use, prior experience of colleagues,
constraints from the local curriculum.)

11.4.5.3 We established a template for questions about teaching materials

These questions were adapted for each teacher, based on their teaching materials pro-
vided beforehand.

* How do your current teaching materials with PyTamaro differ from older teach-
ing materials with another approach or in another domain? Are there additional
topics you are now covering or emphasizing more, or topics you used to cover
that are now missing or less emphasized?

* Do you introduce programming concepts with PyTamaro, or do you use PyTa-
maro as “additional practice” for concepts already introduced in a “traditional
way”?

* Why do you explain how to define functions at that point in the materials? Why
not sooner/later?

* Why do you introduce a certain concept before another?

* Which pedagogical techniques do you use (e.g., group work, think-pair-share,
pair programming, homework, flipped classroom)?

* Do you use unplugged activities? Why or why not? If you use them, do you
abandon them at some point?

* Do you use the PyTamaro Web platform to deliver your courses? Why or why
not? If you use it, how independent are the students when working through the
activities?

After analyzing the teaching materials and before the interview, a set of dedicated
questions was prepared for each teacher, based on this template. Appendix B reports
the dedicated questions for each case.

173 11.4 We conducted a case study on how teachers adopt PyTamaro

11.4.5.4 Some questions discussed the students’ experience

* Do you feel your students like or dislike working with PyTamaro? If you used
another graphical approach earlier, how does student engagement compare?

* How well can students deal with defining their own functions rather early in the
curriculum?

* Do your students tend to write lots of small functions or fewer, bigger functions?

* Do your students feel constrained in what they can do with PyTamaro? Do they
feel they have enough choice (e.g., for a possible final project)?

11.4.6 The study suffers from a clear authorship bias, which we tried
to mitigate

It is impossible to shy away from the clear authorship bias affecting this case study. The
writer of this dissertation is also the author of PyTamaro, who is also the same person
who alone conducted the interviews and analyzed the teaching materials for this case
study. In the interest of demonstrating the thesis of this dissertation, he is inevitably
partial to portraying PyTamaro in a positive light.

This bias is particularly significant for the case study, which relied on interviews.
Section 11.4.3.2 already pointed out how interviews as a data source in case studies
suffer from a number of biases. The question bias and the reflexivity bias are very
significant in our setting.

We acknowledge the presence of these biases in our research. Nonetheless, we tried
to compensate for them with several mitigations. First, as recommended by Yin [284],
we developed beforehand a protocol to be followed for the interviews (Section 11.4.5).
Second, given that some of our questions were dependent on the specific materials
provided by each teacher, we transparently provide a case-specific addendum to the
protocol in Appendix B. Third, when reporting answers from teachers that appear to
repeat back the very words used by the interviewer, we include the exact question as
pronounced during the interview in the quoted material. Fourth, despite the infeasibil-
ity to publish the entire materials anonymously, we present each case with numerous
quotes and figures extracted directly from the interview and the teaching materials.

Ultimately, none of these countermeasures eliminate the authorship bias, but to-
gether they allow readers to form a more complete and independent opinion on our
research.

174 11.4 We conducted a case study on how teachers adopt PyTamaro

11.4.7 We analyzed each case, and across the cases

One compelling characteristic of a case study is the possibility of analyzing a case in
depth. Many case studies describe one single case, which is analyzed and discussed in
isolation.

In our scenario, we were in contact with more than one teacher, and we knew
that the context was very different in each case, and that the context could have a
huge influence on teaching decisions. We therefore decided to make our case study a
multiple-case study, in which each of the five teachers is a “case”. A multiple-case study
is not a qualitative study with a small number of participants: we will first analyze
and describe each case in isolation over the next five sections. Only afterward will
we analyze across cases and present the aggregate findings in a dedicated section.
This strategy for reporting the results of a case study follows the second compositional
format (“Multiple-case study”) recommended by Yin [284, Ch. 6].

We did not follow an “algorithmic” process for the analysis, as it would have been at
risk of missing deeper knowledge. As Kvale writes in his influential book on analyzing
interviews: “There are no standard methods, no via regia, to arrive at essential mean-
ings and deeper implications of what is said in an interview. The demand for a method
may involve an emphasis on techniques and reliability, and a de-emphasis on knowl-
edge and validity. The search for techniques of analysis may be a quest for a ‘tech-
nological fix’ to the researcher’s task of analyzing and constructing meaning.” [157,
p. 180]. Demanding that the analysis should lead to the same results no matter the
researcher “may lead to a tyranny by the lowest possible denominator: that an inter-
pretation is only reliable when it can be followed by everyone, a criterion that could
lead to a trivialization of the interpretations” [157, p. 181] (a positivist view of truth,
cf. Section 1.7). Kvale argues that the interpretation of the meaning should go “beyond
method and draw upon the craftsmanship of the researcher, on his or her knowledge
and interpretative skills” (ibid.). To corroborate this position, Kvale brings an example
of analyzing the interview with a chess player, in which “the researcher’s knowledge
of chess at a higher level than that of the interviewees is a precondition for seeing the
solutions they did not see”.

Nevertheless, we can provide an account of the methodology we followed. The
entire process was conducted by the author of this dissertation.

We collected teaching materials in early 2025. Before the interview, the teach-
ing materials were reviewed to prepare the additional dedicated questions reported in
Appendix B. The interviews with the teachers took place between February and April
2025 and were recorded and automatically transcribed.

For the individual analysis of each case, we relied on the third general strategy
offered by Yin: “developing a case description” [284, Ch. 5], where each case is richly

175 11.4 We conducted a case study on how teachers adopt PyTamaro

described in an attempt to present why and how a certain phenomenon occurred. We
used the automatic transcription as a guide, re-watching all the relevant segments of
the recording to fix transcription issues and capture additional subtleties (e.g., programming-
related terminology). We segmented the interview into coherent parts, which will be
presented in individual sections below. The order of the sections in this dissertation
does not match that of the interview, as it was rearranged for presentation clarity.
In addition to quoted passages from the interviews, the sections occasionally feature
excerpts from the teaching materials that illustrate the theme being discussed, anchor-
ing it to the actual teaching materials used in class. We grouped the sections into
four high-level blocks that are kept uniform across the cases: the first block introduces
the teacher’s context, and the next three focus in turn on each of our three research
questions (Section 11.4.2). We made an effort to separate the analysis of the teaching
materials (RQ2) from the experience with the students (RQ3), but we only partially
succeeded, as teachers frequently interleaved comments about both aspects in a single
answer.

For the cross-case analysis, we used both the first and the second specific tech-
niques suggested by Yin: “pattern matching” and “explanation building” [284, Ch. 5].
With pattern matching, common themes across subjects are brought together (e.g.,
“teachers struggle with explaining variables” or “teachers are able to introduce func-
tion definitions early”). This is also related to “thematic analysis” [30], a methodology
that has been applied in computing education research. With explanation building, we
can understand the reasons behind a certain phenomenon (e.g., “teachers managed
to create materials with PyTamaro only because they had dedicated time in a train-
ing program”). Throughout, we made an effort to attend to all the data we collected,
without disregarding parts that might conflict with our beliefs.

The order of presentation of the cases is unimportant. In an effort to preserve the
anonymity of the individual teachers to the extent possible in a case study, their names
have been replaced with pseudonyms. The illustrative quotes have been left unaltered
as much as possible and only minimally redacted to clarify the context, fix certain
grammatical mistakes of non-native English speakers, and protect the anonymity of
third parties. Omissions for brevity are indicated with ellipses.

Readers in a hurry may want to jump directly to Section 11.10, which presents and
discusses cross-case results. However, we are firmly convinced of the value of the rich
description of the individual cases of the teachers, which is offered here at a depth that
we are not aware has been published before in computing education research.

176 11.5 The case of Ada

11.5 The case of Ada

11.5.1 This is Ada’s context
11.5.1.1 She has modest programming experience

Ada started teaching approximately 15 years ago. She has been primarily a teacher
for German and English, but has occasionally also taught courses that could broadly be
categorized as Information and Communications Technology (ICT). She briefly taught
a course closer to what she is teaching now when Switzerland offered Informatics at
high school level in the 1990s, but cannot recollect with precision the programming
language she used. In 2020 she started studying Computer Science in the national
retraining program for Swiss teachers.

She cannot pinpoint an exact moment when she learned to program. Some rudi-
mentary teaching in C and Python gave her a first exposure to programming. She
started to learn programming properly in Spring 2020, when she wrote her first pro-
grams in Java for the two programming courses in the retraining program. Ada actually
considered those courses as too advanced and thus not ideal learning experiences for
her as a beginner. She then mostly self-taught Python in the next years.

11.5.1.2 She has two colleagues with extensive experience

In her school, there are three informatics teachers. Two of them are dedicated full-time
to computer science and have more than a decade of experience teaching the subject.
One also has a long industry experience: Ada considers them “super-extra experts”.

Ada taught programming for the first time together with a more experienced col-
league. She stood on the sidelines and watched them teach. She was effectively a
support role and did not actively teach. Programming was taught with Python, with-
out any graphics library. As an environment, they were using Jupyter notebooks with
some online platforms that support notebooks or Visual Studio Code. For a while, she
also taught with another colleague who was using the same environments, possibly
with turtle graphics.

Ada’s two colleagues are still following their own approach, with one of the two
now trying an approach to teach how to control hardware with simple sensors and
actuators.

11.5.1.3 She mainly teaches in the 10th grade

In Ada’s high school, the mandatory informatics course is taught in the 9th and 10th
grade. There is the possibility to have elective courses later on. At the end of the 9th

177 11.5 The case of Ada

grade, students experience a brief ungraded introduction to programming (in which
one of the teachers is using turtle graphics) for roughly half of the lessons in the second
of the two terms.

In the 10th grade, every week one lesson is held with the full class, while the other
lesson is held only with half of the students (and thus repeated twice). This allows
students to ask more questions.

In the last term (second term of the second year), teachers propose projects to their
students. Each teacher has the freedom to select what kind of project their students
will do. For the final project in the second term of the 10th grade, Ada asks her students
to create an animation with PyTamaro.

Given that after the 10th grade students only have computer science as an elective
course, Ada does not face the problem that some other teachers have when students
are remixed into different classes, potentially ending up with a different teacher for
the second part of their mandatory course.

11.5.1.4 She gave sensible feedback to two PyTamaro programs

First program Ada begins by noticing in Listing 23 that she also uses this kind of
question in her exams. She also notices that there are several extra spaces surrounding
certain tokens, similar to how her students write code sometimes. (That was actually
an artifact of the chat system used in the interview.) She reports that in practice she
does not complain about that with students, unless those spaces are added in the middle
of a variable, violating the rules for a valid identifier.

Ada claims she would give a full grade to the program as it produces the correct
output, although she admits that the style is not ideal. She believes that this simple
graphic is meant for beginners, and line 3 is possibly too complex. She does not mention
any issue with the redefinition of arm, however:

Ada: Line 3 arm = overlay. . ., this is not easy to read for beginners
[...] because of the function call in a function call.

Interviewer: Ah, because they are nested function calls. So you would
break [them] into 2 separate instructions, 2 lines...

Ada: I'would add a line between 2 and 3 and say arm2 or arm_vertical
= rotate(90, arm) and then use arm_horizontal, arm_vertical
in line 3.

Nonetheless, she would pick a sensible and fresh name for the graphic:

Interviewer: And what would you call this composition, the overlaying
of the two arms? [...]

178

11.5 The case of Ada

Second program Ada noticed that line 4 of Listing 24 was particularly long, some-

Ada: T would call it cross. Because it is not yet the flag.

thing that would not fit on a handwritten page (it was actually 79 characters).

She noticed that the code does not have an import statement.

As for the previous example, she would give a full mark. She said she might deduct
some points from line 4 because everything is on one line, instead of being nicely in-
dented over four lines to make it more readable. While expressing these thoughts, she

realized a bigger problem:

In summary, Ada acknowledges that there are some issues that she considers regarding
“style”:

Ada: Oh, no, wait! No, no. I would definitely give deductions for style
here because it works, but the two eyes with the two concentric circles
there should be stored/assigned to one separate variable, I guess eye.
And then [...] you can put it in one line.

Interviewer: Isee. So that would avoid the repetition of overlay and it
would also make the line shorter...

Ada: It makes it much easier to read because you give it variable names,
and I insist on them choosing easy-to-understand variable names. I would
even say... small black, what [is that]? That’s a pupil. [...]

Ada: So, it works. But styling and usage of variables is suboptimal.

11.5.2 On the choice of adopting PyTamaro

11.5.2.1 For her, the training program was essential to develop materials

Ada chose to create PyTamaro-based curricula as part of her retraining program final
thesis project. For her, developing her own materials was also a way to learn program-

ming:

Ada: I already use [my colleagues’] material a lot. So at some point I see
them basically writing their own books, and I just copy paste. And I also
see how they understand what they’re doing because they created, and
I didn’t. And I think that you understand watching how things work or
don’t work much better if you create something yourself.

But she admits that it would not have been feasible outside this context:

Ada: It’s a lot of work. I would not have done that if it had not been for
my final paper.

179 11.5 The case of Ada

11.5.3 On the teaching materials
11.5.3.1 Here is an overview

Ada created several curricula to cover the entire 10th grade. Two curricula are one a
variation of another for an introduction to programming (the second one is a revised
version of the first, adjusted to account for slightly different periods of teaching and
to include some lessons about what worked and what did not with the first one). She
then continues with a curriculum on “functions”, one on “repetition and change” (i.e.,
mutation), and one on the two PyTamaro functions’ pin and compose. Finally, a
curriculum on “animations” serves as the basis for the final project.

Some students enter the 10th grade with minimal exposure to programming from
the 9th grade, which partially fades over the summer. In the last school year, this first
exposure was not with PyTamaro, as the course was taught by a different colleague.
The introductory curriculum is therefore really meant for absolute beginners.

Ada is using the PyTamaro Web as the main development environment. This is
helpful to deal with the heterogeneous situation caused by the “bring your own device”
policy at her school, where students use a mix of laptops and tablets.

Ada gives flexibility to her students: some choose to work in pairs, others prefer to
work individually.

11.5.3.2 Function definition is introduced with fading examples

To introduce function definitions to students, Ada starts by showing them a fully im-
plemented function definition in Figure 11.1a paired with some example calls with
different arguments, so that students just need to execute the provided code and ob-
serve what happens.

Over two activities, she then gradually removes parts of the implemented body as
in Figure 11.1b and Figure 11.1c. Ada believes this approach can help with a nontrivial
concept such as defining your own function.

Interviewer: Some people argue that defining functions is ‘super mega
hard’. T wonder, what is your experience after going a little bit through
this [curriculum of functions]?

Ada: I don’t think that defining functions is ‘super mega hard’. But the
whole concept is mind blowing and the whole bits of things they have
to understand about it is mind blowing. Because they've only learned
to assign fixed values to variables and then they cannot change those
anymore. Some still believe they cannot assign new values to variables.
They have to give everything a new name. And now you give them a

180 11.5 The case of Ada

def viertelkreis(radius: float, farbe: Color) -> Graphic:
return circular_sector(radius, 90, farbe)

(a) A function definition, fully implemented.

def auge(radius: float, farbe: Color) -> Graphic:
return beside(
rotate(90, ...), # TODO

rotate(-90, ...) # TODO

)

(b) A function definition with a partially implemented body.

def halbkreis(radius: float, farbe: Color) -> Graphic:
return ... # TODO

(c) A function definition with a body entirely to be implemented.

Figure 11.1. Three-step fading a function definition.

variable name which is actually a function name and then you give it
parameters. ‘What is a parameter? What is the difference between a
parameter and an argument? Why is it there? Why do you have to give
something back? Why can you not access a variable that is in a function
from outside a function?’ It’s just so many things that work and don’t
work and that I don’t want to explain because it’s too much, but then
they don’t understand it. So yes, this fading, as you call it... this works.
I still get students that don’t understand that they have to now figure
things out themselves.

A more theoretical explanation of function definition comes after a bit in a dedicated
activity dubbed “Theory”. As part of this explanation, shown in Figure 11.2, Ada nicely
highlights a function definition, the corresponding entry in the documentation bar that
is automatically generated, and an example function call.

Docs:(Elkreis| wrgb_color wgreen whlack wred wellipse| (automatisch erstellte) Dokumentation |
17 def kreis(durchmesser, farbe): . .
Funki
[18 return ellipse(durchmesser, durchmesser, farbe) unktionsdefinition
1]
20 kreis_blaeulich =(kreis(200 , rgb_color(@, 127, 255)) Funktionsaufruf (call) |

Figure 11.2. A figure created by Ada to help explain function definitions and function
calls.

She reports struggling in deciding where to best place this material within the
curriculum dedicated to functions:

181 11.5 The case of Ada

Ada: If you look through the curriculum as it is now, there is the theory
block in the middle. And I've had that at the very beginning. I've had it
at the very end... Not happy with any of it yet, because at the beginning
it’s just too much theory, they don’t understand any of the context yet. At
the end it comes way too late. And in the middle, they still don’t want to
hear the theory, they want to do the functions. They don’t want to listen
to me, they want to work. So I have to tell them off for working instead
of listening to me, which I find the worst thing ever. So what I've now
done is I have them read through the theory, which I don’t think works
either. That only works with the ‘studious’ students. That doesn’t work
with the students that are ‘efficient’.

An alternative strategy could be to motivate the necessity of introducing functions to
abstract over similar pieces of code with the “game of similarities and differences”
(cf. Section 5.5). Although it would not solve the challenge of presenting all the con-
crete ingredients necessary to define a function, it could help students to understand
the high-level concept and its purpose.

This different take at introducing function definitions can also be explained with
Ada’s desire to create her very own materials, without borrowing excessively from the
existing ones.

The individual differences among students are still a dominating factor when it
comes to defining parameterized functions. Confronted with a function that receives a
number and prints all the number from 1 up to that number included, Ada reports that
roughly half of the class is able to second guess what the output will be, but is unable
to properly explain how the execution proceeds step by step:

Ada: They cannot explain. They can tell me the output, but they can’t
explain it with argument passing on to parameter.

Ada does not seem concerned about exposing students to a function that does not
return a value, but is more akin to a procedure. She reports that she has not heard
observations on this from her students.

Ada also notices large differences among students even at the end of a year with
PyTamaro. In her “Animations” curriculum, an activity asks students to program the
animation of a ball, represented as a circle, that moves up and down.

Ada: [An animation] at the end of the day this is just a bunch of pictures
where things change from one picture to the next, so they would have
to figure out themselves how to do that. And for some this works really
well: one student immediately saw the picture [...] you would move the

182 11.5 The case of Ada

ball by adding an invisible pillar at the bottom. Others don’t see it [even]

if I explain it to them. So this [...] ‘similarities and differences’... for

some, they see it immediately, and others you can work them over the

head with it and they don’t see it yet.
This curriculum with animations is a place where Ada sometimes only shows images to
students, and so they have to implicitly play the game of “similarities and differences”
(Section 5.5) across frames.

11.5.3.3 Offline exercises offer practice for the Toolbox of Functions

Ada created dedicated exercises for students to practice the extraction of a function
in order to save it to the Toolbox. The exercise shown in Figure 11.3 asks students to
mark the code not needed to save the function japan to the Toolbox.

from pytamaro import *
show_graphic(testy(1.1))
for name in namen:
adressen.append(
name.lower().replace(" ", ".") + "@firma.ch"
)
from pytamaro import (
rectangle, ellipse,
white, red, overlay,

Graphic, show_graphic

def japan(breite: float) -> Graphic:
hintergrund = rectangle(breite, breite / 3 % 2, white)
sonne = ellipse(breite / & * 1.3, breite / & * 1.3, red)
return overlay(sonne, hintergrund)

show_graphic(japan(200))

Figure 11.3. Starter code for an exercise in which students are asked to mark the pieces
of code not necessary for the function japan.

Ada: They should realise that they only need one function. So that means
that the code before the [second] PyTamaro import should all be deleted.
So no matter what [is] actually there, they should be able to realise that
they can just ignore it and delete it because it’s not used for the graphic
function.

11.5.3.4 Decomposition was also discussed in older materials with turtle graphics

Ada’s older materials, that used turtle, featured a section on “Animation and Decompo-
sition”. She is deeply aware of the importance of decomposition as a general process:

183 11.5 The case of Ada

Ada: Decomposition is when you take things apart, put them into their
individual pieces. It’s the same in literature. When you analyse a book
or a poem, you take individual pieces and you say this is X, this is Y,
this is Z. You put labels on them and then you try to figure out how they
work together... and same with graphics. You figure out that this graphic
consists of [...] two blobs on top of each other and a line. I guess [I was
already focusing on] decomposition because that’s what I learnt.

The fact that the materials were over two years old and not really in use anymore meant
that Ada could not recollect whether the decomposition process with turtle graphics
was supposed to be applied only across multiple frames, or even within the individual
graphic (which would be harder to do cleanly in the context of turtle graphics, given
the presence of implicit state).

11.5.3.5 Both constants and mutable variables are used

Ada is also using the “variable as a box” metaphor to explain variables. She recalls
having heard about it during her training program, when one of the professors talked
about the advantages and the disadvantages of that metaphor.

Ada recognizes the clash between the concept of mutable variables in programming
and variables in mathematics. She does not exploit, however, the fact she could connect
the concept of immutable variables, often referred to as constants in programming, with
variables in mathematics:

Ada: The problem really is with they know variables, but from math and
in math it’s different. It’s a different concept.

Interviewer: Right. Because the math variables are more like what we
call constants [...]

Ada: Yeah.

On the other hand, Ada’s activities talk about constants at the very beginning, for ex-
ample when referring to the constants for colors, such as red.

11.5.3.6 A “Table of Values” is used to explain repetition with loops

Ada’s first activity that introduces the concept of repetition is done outside the domain
of graphics. She presents the idea with a variable that accumulates the sum of a se-
quence of numbers. The sequence is generated with the range function and iterated
over with a for loop. She seems convinced that the mathematical domain is easier
than the graphics domain to explain this idea, but her argument is not fully valid:

184 11.5 The case of Ada

Interviewer: Is repetition first introduced without PyTamaro?
Ada: I think so, yeah. Otherwise they have to understand what an accu-
mulator is, and that is really hard.

The second activity explains repetition using graphics as a domain. Ada uses a “Ta-
ble of Values” to keep track at each iteration step of the operation and the new value
for the accumulator variable. Such a table is presented in the first activity to students
(Figure 11.4a) filled with numbers. Students are then expected in the second activ-
ity to trace a given code that uses PyTamaro graphics to produce the table shown in
Figure 11.4b (which is the reference solution).

element akk + element akk(neu)

0 0+0 0
1 0+1 1
2 1+2 3
3 3+3 &
< b+ 4 10
5 10 +5 15

(a) Accumulating numbers.

n beside(reihe, karo) reihe (neu)
0 beside(0x0,) ¢

1 beside(4p, @) L 2 4

2 beside(@p@, @) L 2 4 4

3 beside(@@@,9) 000

7 beside(QO OOOOO. ©) COOOOO60

(b) Accumulating graphics (0x0 stands for the size of the empty graphic).

Figure 11.4. “Table of values” with numbers and graphics.

185 11.5 The case of Ada

11.5.3.7 She tends to avoid nested expressions

Ada’s code examples tend to avoid nested expressions. She is skeptical about the pos-
sibility of helping students by relating the evaluation of expressions in mathematics to
the one in programming:

Interviewer: I guess [in mathematics] they will see some nested function
calls [...]

Ada: But you know, this is transfer skills, and transfer skills are super
hard. [...] When they learn programming, they're still at the beginning
of gymnasium. So they don’t excel at that one yet. I mean, if you have
those students, that is brilliant, but they are few. They need to learn
about that, [it] is not a skill that they are born with.

11.5.3.8 Some of her materials include method calls

The superfluous code in Figure 11.3 contains methods on lists, such as append, and on
strings, such as lower. Ada confirmed that she had explained such methods before,
but she did not relate or compare them to the simpler functions students are used
to:

Interviewer: Do you even connect the two [methods and functions] or
do you just say ‘these are something else’ [...]

Ada: [I tell my students:] ‘It’s Deus ex machina, [if you] don’t do it like
it, it doesn’t work. I'm not going to explain it to you.’

She is well-aware of the problem this may cause:

Interviewer: So they just memorize it...

Ada: Yes, yes. I don’t think this is a good way of teaching, but it’s a
realistic way of teaching. Because they will see out in the world, these
‘dot calls’ and it’s really tough to then be able to figure out what the state
of various variables is, which makes it hard to understand code. Which
is why I try not to teach it too much. But on the other hand, they need
to learn to use code that they don’t understand how it works.

Still, some of these methods, such as the ones on strings, are effectively stateless and
could be explained as functions with a special syntax. For example, "PyTamaro" . lower ()
can be viewed as a lower function taking one parameter: the object onto which the
method is invoked (e.g., lower ("PyTamaro")). This would help to relate method
calls, which are unfamiliar to students, to function calls, which they have seen exten-
sively. The Judicious documentation system could be extended to cover these cases
and help teachers bridge to methods.

186 11.5 The case of Ada

11.5.3.9 She does not use TamaroCards

Ada is not currently using the paper-based approach with TamaroCards to introduce
functions, although she still reports using the Judicious documentation on the web
platform, which by default includes a diagrammatic representation of functions (Sec-
tion 9.2.1).

To justify the choice, Ada reports that she is experimenting with her current 10th
grade students by having fewer in which they “program” on paper. She recalls doing
that only once this year, to explain assigning values to variables. However, her exams
also require programming on paper.

11.5.3.10 Her activities on PyTamaro Web end with explicit learning goals

Building upon a suggestion of her final project advisor in the training program, at the
end of each activity on the PyTamaro Web platform Ada writes a recap to summarize
what a student is supposed to have learned, as shown in Figure 11.5.

Losungsstrategien

+ Sie kdnnen Probleme losen, indem sie diese in Teilprobleme zerlegen.
= Sie kdnnen bestehende Programme sinnvoll anpassen und erweitern.

Python

+ Sie kdnnen Variablen sinnvoll verwenden.
= Sie konnen einer Variablen einen Wert mit = zuweisen und diese Variable weiterverwenden (Variablen als
Zwischenspeicher).

PyTamaro

= Sie konnen Grafiken mit der PyTamaro-Bibliothek erstellen.
* Sie kdnnen die Funktionen wcircular_sector, woverlay und swrotate verwenden.

Figure 11.5. Example of learning goals at the end of an activity.

The recap consists of bullet points structured into three major parts: general ideas
about programming, knowledge specific to the Python programming language, and
knowledge specific to the PyTamaro library. Examples of each category include, in or-
der, being able to decompose a problem into smaller subproblems, knowing the syntax
for calling a function in Python, and knowing PyTamaro’s above function.

This clear structuring seems to have the potential to clarify the boundary between
the programming language and the specific APIs students learn:

Interviewer: [Even after presenting this clear separation,] do you still
hear students [saying] ‘No, we didn’t do Python, we did PyTamaro’?

187 11.5 The case of Ada

Ada: I've never heard that. Never heard anyone say ‘We did PyTamaro’ in-

stead of Python. I do explain what the language is, I do explain what the

library is. But the problem is [...] we use multiple libraries, but mainly

PyTamaro and I don’t think we do any other programming languages

apart from SQL [...]. So I do tell them, but they only see actually Python

and PyTamaro working together and very rarely do they see Python with-

out PyTamaro at all. So even though I tell them, and even if they repeat

after me, that ‘Python, PyTamaro’ are separate, I don’t think that they

see that. I'm skeptic about that.
Some of Ada’s activities use only libraries that come standard with Python, for example,
to play with random numbers or doing string manipulation or mathematical exercises;
but she admits that PyTamaro-based activities vastly dominate the others.

Ada does not emphasize too much in class the learning goals at the end of an
activity, but she observed that some students actually do read them, because they know
those points will be the basis for exams, or just because they are curious to reflect on
what they were supposed to have learned.

11.5.4 On the student experience
11.5.4.1 Student attitude varies more individually than by their major

Ada has been teaching computer science to students who choose economics or modern
languages as their major. She claims that the profiles between the two classes are very
different, but they react similarly to graphics. The variability of individual students
within one class is greater than and dominates the differences across classes. Still, she
notices a difference in how they approach their coursework:

Ada: In modern languages you mostly get girls [... who] tend to be very
studious, so they put in a lot of work. Even if they don’t understand it,
they put blame on themselves and then they work. Not every girl, of
course, and not every boy does that. But then, very often in economics,
you get the boys, who are time efficient.

11.5.4.2 Students find listing explicit names to import demanding

One of the snippets of code Ada briefly used in the past for an introduction to turtle
graphics had as a first line the statement from gturtle import *. With PyTamaro,
it is usually encouraged to explicitly list the names one is importing from the library
and avoid this wildcard import, that makes things work with some sort of magic. When
asked about any positive or negative impact of this choice, Ada focused on the amount
of things a novice has to understand at the beginning:

188 11.5 The case of Ada

Ada: Well, they were certainly annoyed... when I made them switch
to using every single... to import the names individually. And it’s also
difficult to explain why they have to do it the complicated way, instead of
the easy way. I mean, at that moment they’re learning so much, because
they start from the beginning. I don’t bother [them] with having to list
everything [...] Because when you’re a beginner, the amount of stuff you
have to learn is insane. Really insane. You totally forget that [...] once
you’ve been programming for a couple of years, it’s insane.

11.5.4.3 Students get creative in the final project with PyTamaro

Overall, Ada feels that PyTamaro gives her students enough freedom to be creative and
have agency in their final projects.

Ada: I have students who excel at this and then they don’t feel con-
strained at all, they feel enabled. And other students who would then
like to use other libraries inspired by Al code snippets. I wouldn’t say
that they know other libraries where it would work better. They’re so
well versed by that point in PyTamaro that this is what they know. So
why change system when they’re already challenged with putting code
together on their own for the first time.

For Ada, the project is really the first moment in which students start from a blank slate
and have to write entire programs on their own. She is considering doing more of it:

Ada: I think about doing that earlier... I think it would be good for them.
11.5.4.4 Students can debug PyTamaro programs without a debugger

In her older materials with turtle graphics, Ada showed a screenshot of a debugger.
When asked to reflect about it, she realized that debugging is currently lacking as an
explicit topic in her current PyTamaro-based curricula.

Ada: So debugging is one of the topics I don’t talk about with my current
version, and I do think that is something that is missing, because students
need to understand what is happening at every level of their code. On
the other hand, they cannot rely on extra tool, they have to use their own
brain... which is theoretically a good thing.

Nonetheless, she did not make extensive use of a proper debugging tool even before
PyTamaro. She also noted that students can use a form of “print debugging” by insert-
ing side effects between instructions, such as calls to show_graphic, to inspect the
value of the variables.

189 11.6 The case of Barbara

11.6 The case of Barbara

11.6.1 This is Barbara’s context
11.6.1.1 She teaches mathematics and is critical about her programming knowledge

Barbara studied German as her major subject and mathematics as her minor during
her university studies. She has been teaching mathematics at a high school for approx-
imately 17 years.

She attended the national retraining program for informatics teachers in Switzer-
land, but she also had a Java programming course as part of her university studies. She
is quite self-critical of her previous programming knowledge:

Barbara: I learned programming with [prof. Hauswirth], with PyTamaro.
Before I learned stuff by heart and I reproduced it. But I wasn’t able to
really do new things.

11.6.1.2 She teaches in the 9th grade to students from different majors

Barbara has been teaching the very basics of programming with MATLAB and a turtle
curriculum using TigerJython [259] as part of her math course. In her school, students
learn about ICT and a little bit of Scratch in 7th and 8th grade. Afterwards, the core
programming part starts, and teachers are free to choose the approach.

Barbara teaches with PyTamaro, as well as a colleague of hers. Another teacher at
their school uses JavaScript with the P5 graphics library. The remaining two teachers
use turtle graphics with TigerJython.

The programming part spans two-thirds of the 9th grade. Barbara’s students come
from a variety of majors:

Barbara: Last year I had two classes, one was a ‘music’ class and the other
one was a ‘bilingual’ class [where] you have to have an average mark of
4.5 [out of 6].

Interviewer: Would you say that there is a difference in how much they
liked your stuff?

Barbara: It’s easier for the bilingual.

Interviewer: Because they are just better students in general.

Barbara: Yes, and they don’t mind the English stuff. A for loop doesn’t
bother them, but other students they have to translate. A little difference,
but you feel it.

190 11.6 The case of Barbara

11.6.1.3 She mostly focused on style when giving feedback to two PyTamaro pro-
grams

First program Barbara correctly notes that the feedback on Listing 23 would depend
on what the students have learned by that point:

Barbara: The first thing is... when is that program [written]? Is it after
two lessons? Or is it at the end of the first year?

She reports nudging the students towards writing nested code and avoiding giving a
name to individual primitive graphics:

Barbara: I always told them we don’t do primitives into a constant. At
least two or three primitives go into a constant.

Interviewer: Interesting. Why? Why would you say that?

Barbara: Because a lot of students do exactly that, and it doesn’t make
sense to have just rectangles with a name

Indeed, one of her grading criteria talks about “shallow nesting depth”:

Interviewer: Is this related? You want them to understand nesting a
little bit and nest their code...

Barbara: Yes, and find the balance between nesting and depth. I mean,
if you have 12 primitives in one [expression] it’s horrible. [...] [Having
both] arm and arm doesn’t make sense; if you do it like that, take arm
and arms. Use sensible names.

While composing nested expressions plays well to PyTamaro’s strengths, not giving
names to primitives and “inlining” them can lead to code duplication. She offers a
solution for the specific problem and discusses “elegance”:

Interviewer: But wouldn’t that then introduce like quite some code du-
plication?

Barbara: I wouldn’t take rotate... [I would just use] rectangle, 60,
200... so I don’t have code duplication.

Interviewer: Uhm, Isee. [...] 'm not sure this is going to work in general.
Barbara: Absolutely not, but that’s one thing I want to train with them,
to think about what is reasonable in a code. ‘What makes it readable?
What do I need to do to understand the code? How can I use [as few
as possible] variables and functions?’ 1 always talk about elegance. I
wouldn’t say that is elegant. It works, but it’s not elegant.

191 11.6 The case of Barbara

Second program Barbara again refers to a vague notion of elegance when assessing
Listing 24:

Interviewer: The question is the same, what would you give as feedback?
Barbara: About the same: it works, but it’s not elegant.

On this second program, she immediately noticed the code duplication, and also com-
plained about poor names:

Barbara: I would define one eye [...] and then eyes with a beside. The
names aren’t good; like what does it mean ‘big green’? In two weeks,
they don’t know anymore what ‘big green’ means. [...] They should use
names they can imagine what it is.

She did not bring up the possibility to abstract and create a function to draw a circle,
but understood the tip when prompted:

Interviewer: What about the little duplication there, like diameter /
4, diameter / 2 that is repeated for both arguments of ellipse? If
you were to get rid of that... First, would you? And then, how would you
[do it]?

Barbara: We start refactoring really early and that is one of the examples
we refactor. I would say: ‘make a function’.

She then suggested the use of a different primitive, circular_sector, to avoid spec-
ifying the radius twice. She took a while to find a solution that still uses ellipse,
potentially because she is used to have a circle function in her Toolbox:

Barbara: I don’t see what you want me to say... Ah! I know! You mean
the circle. I haven’t seen it! In fact, we relatively quickly introduce the
Toolbox and they do have circle.

11.6.2 On the choice of adopting PyTamaro
11.6.2.1 The lack of a textbook made her hesitant

At the beginning of her career teaching the newly introduced mandatory informatics
course, Barbara did not use PyTamaro: she followed the textbooks that accompany
TigerJython. She was not entirely satisfied with them:

Barbara: I wasn’t happy with it and I was thinking about doing something
else.

She was hesitant about PyTamaro, however:

192 11.6 The case of Barbara

Barbara: There is no book or stuff, but then I went to the summer camp
and realized that I can use that stuff [the slides] and develop it.

Indeed, as we shall see in the next section, the backbone of her materials consists
of slides used in a summer training camp with PyTamaro dedicated to teachers and
students. She has now been using PyTamaro materials for two years.

11.6.3 On the teaching materials
11.6.3.1 Here is an overview

Barbara is teaching PyTamaro with an extensive set of slides. She modified and adapted
some of the slides that were used to teach PyTamaro during a week-long summer camp,
and also added additional slides she created herself.

Barbara is also developing a curriculum to teach recursion with PyTamaro. At
the time of the interview, the curriculum was still under development and had not yet
been tried with students. Those activities are more advanced and target students in the
11th grade who choose computer science as an elective subject. They guide students in
writing programs to draw fractals with PyTamaro, such as the Sierpinski triangle and
the Koch snowflake.

11.6.3.2 TamaroCards are used from the beginning

Barbara follows the sequence proposed in the summer training program to introduce
PyTamaro:

Barbara: We introduce primitives, constants, and at the end of the day,
they already refactor to functions. But they do it all [using the] cards. So
after one day they know how to write small code blocks and save them
into a variable or save them into a function. The funny thing is, after one
day they are really good... and then the holidays come, and they forget
a lot.

Then, she uses more graphics, such as a traffic light and a seven-segment display, to
practice programming:

Barbara: We always talk about how to do it, they decompose it, then they
go on Miro board [a collaborative online canvas] and do the PyTamaro
card stuff.

She instructs them to use the “Playground” of the web platform and define a constant:

193 11.6 The case of Barbara

Barbara: If it works, they are allowed to refactor it to a function. That’s
the normal process they learn. Decompose, think about composing and
then write it, constant, function.

She reports that the transition from cards to code already happens on the first day of
instruction. When asked whether she guides the process or lets students figure it out in-
dependently, she confirmed she draws a “path” to teach students how to systematically
turn an expression specified with the cards into a syntactically valid Python expression
(a process we described in Section 6.4).

11.6.3.3 Students mostly use the Toolbox on the web platform

Barbara’s students mostly work using the Playground on the PyTamaro Web platform.
She tried to use Thonny [12], but some issues arose when using third-party libraries,
possibly caused by the specific setup at her school. Some of the more advanced students
use Visual Studio Code [267], but no teacher support is provided for it.

Barbara instructs her students to use the Toolbox—in the form of a local file in
Thonny or a virtual file on the web platform—to avoid code duplication and teach
abstraction, as shown in Figure 11.6, which reproduces one of Barbara’s slides.

Codeduplikation vermeiden:

U = LP <3
toolbox.py - tes R

Thonny: I Fram Playground:

Save Function to Toolbox

Implementation

def square(grésse, farbe):
return rectangle(gross e
imports (move them all to the top, combine them and get rid of unneeded ones)

from pytamaro import rectangle, red, show_graphic
def square(grosse, farbe):
return rectangle(grésse, grosse, farbe)

show_graphic(square(100, red))

Functiontosave | Function v

Figure 11.6. A slide that compares working with the Toolbox in Thonny and in the
PyTamaro Web Playground.

Overall, a good number of students appear to have become familiar with the process
of working with the Toolbox:

194 11.6 The case of Barbara

Barbara: We don’t want to have code duplication, so they should use the
Toolbox. The better third [of the students get it] really fast, the middle
third always forgets to save it [the function] or saves it somewhere else,
or has a show_graphic in it. I think they got the concept [of saving and
then importing].

11.6.3.4 A transition from constant to variables happens when introducing loops

For the first part of her course, Barbara uses “constant” to designate names. Before
introducing loops, however, she felt that she had to clarify that actually constants are
variables and can change value over time. She explains this with an animation right
before loops, as seen in Figure 11.7.

Was ist eigentlich eine Konstante?

blume = beside(
circular_sector(50,360, blueten_farbe),
circular_sector(50,360, blueten_farbe)
)
bluete = overlay(
blaetter_paar,
rotate(90, blaetter_paar)
)
blume = overlay(
circular_sector(50, 360, yellow),
bluete
) blume

Figure 11.7. A slide featuring the “variable as a box” metaphor with a PyTamaro

graphic.

Barbara: Afterwards we go to loops. We normally have constant as some-
thing unchangeable. If you save it [the graphic] as blume, blume is gone,
you can’t use it anymore. And now we tell them why it is called ‘variable’
for real, because you can save again and again.

She reflects on the use of “variable as a box” as an analogy, which is known to have

problems:

Barbara: And the boxing... I know it’s not a very good picture, but we
call it a ‘magic box’. It’s always only one [element] in it, but if you take
one out, there is another one in it to take it out... because the box thing
has the problem, if you think of having infinite flowers in it, it doesn’t
make sense at all, but you can take out infinitely often the flower, one

flower.

195 11.6 The case of Barbara

Interviewer: With ‘take out’, do you mean when you read from a vari-
able?
Barbara: Yeah, yeah. There isn’t an infinite amount of flowers in it, but
it’s one flower you can take out infinitely often.

This new knowledge of variables is then used to achieve repetition with loops:

Barbara: And I think it’s very important because we have that constant
picture of variables that they are immutable, but then we, suddenly, out of
the blue, we save again and again and we save something different. And
in the first round when we [I and a colleague] taught loops, we realized
that it is a real big problem. That’s why we do that thing with the boxes.
That helps a little.

11.6.3.5 There are issues with transfer on loops and lists

The “variable as box” analogy is problematic when dealing with mutable objects. Bar-
bara reported covering lists, but not anymore with PyTamaro, in the subsequent year
(10th grade):

Barbara: We go to print. We work with numbers and characters. We
also realized that, for example, the loop processing a list... that’s re-
ally complicated after PyTamaro, because they always want to work with
empty graphics. They don’t see... I don’t know where the problem is
exactly, but that’s what we observed.

However, if all the loops students see use an “accumulator” variable that is initialized
with an empty graphics, they may conflate the two concepts. It may be useful in the
first year to show and contrast multiple approaches.

Barbara: We do that and we also do it really step by step. They have
several for loops processing lists, just to read and then to transform to
something else, to use it. Like we start with numbers, and they have to
change it so they can process characters or strings. And still in the exam
last year...

This good example only comes in the 10th grade. Even a small example already in
the 9th grade, to introduce already a loop with numbers, could probably help. Time
constraints dominate, however, and she feels that her progressive build up towards a
graphic with a loop is quite effective:

Barbara: The problem is really we have the loop in a really short time.
Interviewer: I see the [progressive reveal on the slide]: so you build up

196 11.6 The case of Barbara

the graphic...
Barbara: And they quite get it. And then they use it as you see to make
one of the pictures on the next slides. And it works quite well.
11.6.3.6 The PyTamaro curriculum focuses on concepts, but turtle requires less syn-
tax

Given her experience in following a Turtle-based curriculum, Barbara could comment
on the differences, positive or negative, that she saw between the two approaches (e.g.,
covering some concepts more or less extensively). Overall, she was quite critical of the
previous approach:

Barbara: I think the main goal of teaching computer science or infor-
matics or programming is to get them understanding how programming
works. And I think [the previous approach] doesn’t fit at all. I mean,
you can have that turtle walking around for the whole year and nobody
understands anything about programming.

That was a strong claim, especially because controlling the turtle (physically, as the
original idea, or virtually) is closely related to programming a robot, something that
students could relate to. In what appears almost like a stream of consciousness, she
doubled down on criticizing the previous approach with turtle graphics, contrasting it
to PyTamaro:

Barbara: It’s about the same when I say “just decompose your language
so you can command a robot”. I mean, it’s “right”, it’s “left”. It’s not
thinking about why this command works? It’s not about writing your own
command, because right and left are fixed. You can write a command
circle or a square or something like that, but... I mean, I thought
[turtle graphics] in mathematics for eight years or so, and I thought I
could program. [Laughs.] And then I realized it doesn’t help me with
Java, it doesn’t help me with constants, with variables, with functions,
types, stuff like that. You just have that turtle walking around and you
think: ‘oh, wow, I can program’, but what PyTamaro does is... you have
to think about what is yellow, what is circular_sector, what is a
function. You have above, beside, you have higher order functions.
I mean, that’s programming, that’s what I use to program other stuff
when I program [in] Java. That comes from my experience. I learned
Java with the book “Java ist auch eine insel”. It’s a horrid book. I had
to program mammals and cats and dogs and. I couldn’t imagine what
that could be. They only barked and ate and slept and... T had a vision

197 11.6 The case of Barbara

of cats and I thought ‘T program a picture of a cat’ and it didn’t work.

So thinking about what I program [...] is given in PyTamaro but not

in [other approaches]. I learned programming with PyTamaro because

then I got the concept of functions and variables, and defining my own

functions and then getting ‘ah, you can reuse it!’, and stuff like that. I

never got that with [turtle]. Abstraction’. I never got that. It’s a little

embarrassing. I taught programming for years and I haven’t had a clue

myself.
It is not uncommon that at some career stage one teaches concepts without fully under-
standing them. But Barbara’s comments were so favorable to the PyTamaro approach
that deserved some pushback. When pressed, she found an aspect that was better when
she was following the turtle approach:

Interviewer: What is something you would say was more prominent [or
better, in turtle]?

Barbara: I think the frustration was less.

Interviewer: Why would you say that?

Barbara: Because you can have the turtle walking, right 90, forward 100,
right 90, forward 100, right 90, forward 100, and you can read it. You
can have an endless list of functions, and the turtle did do something.
PyTamaro, if I forget a comma, the whole stuff doesn’t work.

She noted that the burden imposed by the syntax is higher with PyTamaro, but she was
still convinced that it was worth it for her context:

Interviewer: [So with PyTamaro] it’s easier to get a syntactic error...
Barbara: Yeah, but I think that’s the real thing. TigerJython is, in my
opinion, too student-friendly. I mean, you don’t have commas. The only
thing you have is the indent after repeat or after a definition. But that’s
it. There is not a lot of points where you can get frustrated.

TigerJython modifies Python to introduce a repeat statement to simplify the syntax
of a loop that repeats a fixed number of times [147]. But for Barbara, this may actually
become a downside, if the goal is to progress to “full” Python.

11.6.4 On the student experience
11.6.4.1 Some students still struggle with syntax, despite TamaroCards

Despite using TamaroCards, Barbara reports that this is not solving syntactical issues
for all of her students:

198 11.6 The case of Barbara

Barbara: About half of them really use it because they realize that think-
ing about syntax is rather difficult. And if you do it [using the] cards,
they can think about the process of composing and decomposing and
don’t have to think about syntax. But other students, they skip it. And
what I see there, they normally have really big issues because they just
write triangle, triangle, and then above.

These students are probably struggling with the nesting, using what she calls “natural
syntax”:

Barbara: And they get really confused because it doesn’t work. Play-
ground always says ‘Perhaps you forgot a comma’, ‘missing argument’ and
they say ‘all arguments are here, what did I do wrong?’. And sometimes
I get them to go back and do the cards stuff and that really helps. And
after a while I would say one third is able to directly write code without
the cards, and one third is not able after a year [not even with the cards].
[The remaining] are still working with the cards.

Barbara reports, however, that the underlying issue may just be with students who are
not practicing programming enough:

Barbara: We have one problem, and we don’t have it only with PyTamaro
but also the [teacher who uses] P5... that people don’t do their home-
work. We can’t get them to practice, and if they don’t practice, they don’t
get used to syntax and so they’re not able to program.

One possible explanation could be that the tasks offered to the students are not at the
adequate level, either because they are too hard or too easy. Alternatively, or perhaps
additionally, students may not see programming as a relevant activity. If that were the
case, the materials could be questioned in terms of their engagement for her audience.
Barbara speculates about the underlying causes:

Barbara: I think it has to do with frustration. What we see is that if
it doesn’t work in the first place, they often say ‘it doesn’t work!. And
then I say ‘read the error message, what does it say?’ OK, it says ‘You
forgot a comma’, ‘go and look where there is a comma, where is a comma
missing? Go through the code’. And they are not able to live with that
frustration that in 80 % of the tries it doesn’t work. And the problem is
you have to stay at the computer for 45 minutes. And try, and try, and
try. And be critical with yourself. T guess some of them are not able to
say ‘OK I made a mistake. That’s OK. I try to find it. I try to fix it.’

199 11.6 The case of Barbara

Programming is known as an activity that requires demanding levels of attention to deal
with abstractions and rigorous notations [27]. Barbara believes that some students are
not used to it:

Barbara: As a math teacher, I see the same problem with first-year stu-
dents. But in math, it’s not 80 % of the time. It’s about 50 % of the time.
In programming, it’s quite a lot of frustration. I mean, nobody looks for
spaces in texts, but if you have a space in the wrong place, the program
doesn’t work. Or a comma, what does it change if I have German text
with or without comma? And now the computer says ‘sorry, without that
comma, [won’t do anything’. They're not used to that.

11.6.4.2 Projects were affected by language models and a restricted set of activities

For the final project, Barbara and a colleague of hers took all the activities available on
the PyTamaro Web platform, excluded some of them because they felt were unsuitable,
and classified the remaining ones into easy, medium, or hard. Students could then pick
two activities to program; solving harder activities awarded more points. This worked
quite well for her:

Barbara: We allowed “foreign intelligence”, not only Al, but also help
from somebody because we had a lot of parents, and friends, and siblings
helping. They had to declare if they used somebody else, that’s fine with
us, but they have to explain the code. And we don’t mind if they have...
nested for loops three times or whatever, as long as they could explain it.
And for my classes it worked fine. They really had a lot of fun. They did
do real good stuff. I had only one person who tried to cheat. And one
person who had almost the whole code done by Al. But the second one,
really worked on it so he could explain it, he said freely: ‘the code was
generated by Al, but I can explain it’. He got the points for explaining,
but not for writing. But it’s OK. He knew that before.

But not so well for a colleague of hers:

Barbara: And for another class with [a colleague], about half of them
tried to cheat, and I mean... [that’s] really stupid. Like they had constant
names for real constants written in capitals. And we ask ‘why do you do
that in capital’? They couldn’t answer why. You normally do it [...] like
with pi [...] but they haven’t learned it with us, so it was obvious. Or they
used lists and haven’t heard anything about lists. They couldn’t explain
what ‘list name’, ‘square brackets’, ‘i means and stuff like that. It was

200 11.7 The case of Charles

really horrible and they tried to tell us they wrote that by themselves,

and that wasn’t cool.
Some of Barbara’s comments are surprising, because at the time of the interview, most
LLMs had not seen much PyTamaro code in their training data and they frequently
hallucinated incorrect code. Barbara instead reports that the leading models perform
quite well:

Barbara: But the paid [version of] ChatGPT knows [PyTamaro] quite
well. T'use it myself. And they also have parts of code from the PyTamaro
website, like the watermelon [activity]. There is some code you can feed
to the Al and it only fills in the missing stuff.

Students were not upset by the limited choice of activities for their final project, but
Barbara plans to change this aspect for the current school year:

Barbara: They had quite a lot of fun. But this year we’ll do it the other
way around. They have to paint a picture first and then program it.
Because I think also [that] some activities are too guided and some are
not, and it’s quite heavy to [decide] to give points or not. It was an
experiment and we weren’t totally happy.

She still plans to focus on code comprehension and decomposition in the domain of
graphics:

Barbara: But that’s why we had an oral exam afterwards about their
code. They had to explain the code. They had to explain the process,
how they worked, how they decomposed, and stuff like that. And quite
a lot of points were for that oral exam.

11.7 The case of Charles

11.7.1 This is Charles’s context
11.7.1.1 He is a biology teacher with some programming experience

Charles started teaching programming in the school year 2018/2019. He has been
a biology teacher, his main subject, for approximately 12 years. He started learning
programming during his studies, before becoming a teacher, learning a bit of Java at
the university and working with the R language afterwards to do statistics. Before
the introduction of computer science as a mandatory subject, he was teaching Java to
his students, but he claims to be most familiar with R. He also attended the retrain-
ing program, where he mostly took programming courses in Java, with Python being

201 11.7 The case of Charles

marginal.

11.7.1.2 He uses PyTamaro in the 9th grade

The mandatory informatics subject happens in the first two years in Charles’s school,
corresponding to the 9th and 10th grade. Every week he holds a “double lesson” of 90
minutes with the full class. The cantonal curriculum also requires teachers to include
parts of ICT, effectively limiting the time for all the other topics, including program-
ming. The programming part lasts roughly 2 months in the 9th and 10th grade. Dur-
ing this second year, Charles’s students work on a programming project with a popular
Python library for games.

11.7.1.3 He gave good feedback on two PyTamaro programs

First program At first, Charles praises the structure of the code in Listing 23, which
seems in line with what he teaches:

Charles: What I like is the naming. There’s quite a lot of naming, like
‘background’, ‘arm’, etc... before the graphic is actually shown. And this
is actually something that I suggest to my students as well, to do this kind
of naming [so that] the code is better readable. Maybe, one problem is
[that] it’s not very flexible, so [if] you need to change those numbers... it
might make sense to use variables there as well, not just for the interme-
diate steps. At the end of the first-year curriculum, I'd suggest that they
transform this into a function, with all of those as parameters.

He then realizes that arm as a name is used twice, and suggests a better alternative:

Charles: Well, one thing maybe that’s quite... bizarre is that they use the
same variable name for arm, for the two states of arm... so in a more
like... pure, function-oriented thing, you want to name them differently
I think.

Interviewer: So what would you use as a name?

Charles: Well, first horizontal and then vertical arm... Oh no! The second
thing, the second arm is actually not an arm. It’s already... it’s the cross
already. It’s the wrong name. [...] So they overlay that rotated arm and
the arm, and they still call it ‘arm’. Well, but ‘arms’ might be better, or
‘cross’.

Second program On the program of Listing 24, Charles noticed the code duplication
and suggested factoring out the common code:

202

11.7 The case of Charles

Charles: Well, again, you could transform this into a function. Quite a
lot of naming this time. I think the names ‘small black’ and ‘big green’
are pretty straightforward. [...] However, I'd rather suggest that they
use an intermediate step between ‘big green’ and the ‘eyes’. So maybe
first program the eye... because there is so much redundancy in the ‘eyes’
line.

Interviewer: There’s a whole part [being] repeated, no?

Charles: Yeah, exactly. If you use eye just with overlay of small black
and big_green... you have a smaller code snippet, less redundancy. So
you could just glue together your two eyes.

After he suggested again the possibility of removing hard coded numbers and colors,

he also noticed an opportunity to further abstract:

Charles: Maybe something else here? Maybe this is also already valid for
the program above. You could simplify the ellipse as a circle, a perfect
circle. So maybe use a function that creates a circle which uses ellipse
[with] the same diameter. And the same before with the rectangles.

11.7.2 On the choice of adopting PyTamaro

11.7.2.1 The graphic domain is engaging for many students

Charles works at a gymnasium where students can choose their own specialization.
Out of approximately 12 classes, one or two are following a STEM curriculum. All the

teachers chose an approach with graphics, be it PyTamaro or turtle graphics:

Charles: At the beginning we have mixed classes and we want to have
something that motivates all of them... because I think it’s... more like
fascinating and it’s easier to engage with, even though they are not all
motivated in programming first. [...] Actually, most of them want to
learn programming, but it’s still something that is a to-do for them.

There is a clear difference with the students who chose a mathematics-oriented major,
but even those students do not dislike graphics:

Charles: There’s a huge difference because the STEM students, they’re
really motivated for programming. I think with those you could do what-
ever... But these are the ones who like graphics as well. These are the
ones who start experimenting with plenty of different things with the
graphics.

203 11.7 The case of Charles

Charles developed teaching materials with PyTamaro in preparation for a study he car-
ried out for the final project of the retraining program. Charles taught programming
with PyTamaro for the first time during the last school year, when he was conducting
the study. He taught two classes in parallel, one with turtle graphics, and the other
with PyTamaro. Before that, he was using materials developed at his school by other
teachers. These materials were based on turtle graphics. This group of eight informat-
ics teachers is still following the turtle-based curriculum.

11.7.3 On the teaching materials
11.7.3.1 Here is an overview

The teaching materials Charles provided are those created for his study and consist of
eight digital handouts to introduce programming using PyTamaro. Starting from un-
plugged activities with TamaroCards, they proceed to programming in Python, defining
functions, using PyTamaro’s pin and compose, repeat computation, work with colors
and animations, and end with conditionals.

This year, he has made some adjustments to the materials:

Charles: I did take some takeaways from the experiment and tried to im-
plement them already. So this time I provided them a lot more time at
the very beginning. I had this unplugged exercise and this time I had ad-
ditional 90 minutes, like one of those double lessons, where they could
try to transform those unplugged things into code. That was actually
absolutely absent before [...] maybe 20 minutes the year before, where
they could think about code. But this time I really wanted them to have
the entire time to program those things that they already programmed in
their mind, with shapes, etc., now with Python. This was quite a change.
The second change is that this time, like range and conditionals... [they
were] a bit earlier last time. Right after repetition, [...] I moved to col-
ors because [...] Ithought that it’s actually a more logical successor to
sequences [such as lists], because it’s basically again a sequence. Or also
to create animations, this is also covering sequences.

11.7.3.2 He uses TamaroCards and explains how to turn programs into Python

Charles uses TamaroCards for some unplugged programming activities:

Interviewer: Do they actually do that [composing programs with the
cards] physically or do they like drag and drop stuff on their machines?
Charles: No, no, physically. So, paper, scissors, etc... differently col-

204 11.7 The case of Charles

ored paper. I usually use some brownish paper as a background and
they sometimes glue stuff or they just lay down so they can rearrange.
What I always want is that they [...] label the things or they add draw-
ings like arrows and in the end they take a picture and upload [it] as an
assignment.

For the entire duration of a 90 minute lesson, students work only with the cards:

Interviewer: Do they use already [...] names, constants, the blue [cards]?
Or do they just build a big expression?

Charles: Well [they are] there, but I don’t comment this really at first, so
they do big expressions. And after a while, especially with the eyes, they
get kind of annoyed that it’s so repeating, and so complicating, and so
much time... And then I introduce names as a ‘freedom’, so that they’ll
be less annoyed. This is actually also the introduction of ‘giving names’,
already. This happens maybe at half time, because I want them to feel
kind of annoyed first, so they have motivation to actually use names.

Figure 11.8 shows a single, big expression to build the flag of Greenland, while Fig-
ure 11.9 shows students using a custom constant they defined (eye) to build a pair of
eyes.

Figure 11.8. Photo of students” work composing the Flag of Greenland in a single
expression using TamaroCards.

The second lesson marks the transition from the unplugged activities with the cards
to writing Python code. Charles’s approach is more ad hoc than the systematic method-
ology presented in Section 6.4:

205 11.7 The case of Charles

beside
neben

accanto

Figure 11.9. Photo of students’” work composing a graphic of two eyes with personal-
ized constants using TamaroCards.

Interviewer: What are the instruction for the students to move from the
cards to the code?

Charles: The instructions are extremely small. It’s basically ‘this is the
documentation about code’. Of course, they kind of know the code al-
ready because of the cards, but not all of it. I really propose them to look
at the official documentation. [...] They usually do it in teams, in pairs.
So it’s OK if one codes and has the unplugged material, or the documen-
tation, and then they just need to look at their own unplugged versions.
What I did in the meantime is I commented on their unplugged versions
they uploaded. So they read those comments, they tried to implement
the comments... now directly with code.

Interviewer: I see, that makes sense. But how do they know... the card
shows a ‘rectangle’ function with three parameters [...] and then it pro-
duces a graphic, but there is also a tiny bit of syntax here [to write in
Python]: after the function name you need an open parenthesis, between
arguments you need to put commas... how do they figure that out? Do
you tell them?

Charles: There is this one example with the house where they can already
see that. And I keep doing it live on the screen as well, like coding and
showing them some of those examples. A mixture of live coding, just
showing this example and yeah, supporting them if some questions arise.

This approach could only work because some Python syntax was already shown in a
very introductory lesson, before the unplugged activities. In that introductory lesson,
Charles showed some bits of syntax: how to import from a module, how parentheses
work, what common error messages mean, and so on.

11.7.3.3 He uses a memory diagram to explain variables

To gradually introduce repetition with loops and the necessary concept of variables as
references to values, Charles showed his students a comparison between zero to add

206 11.7 The case of Charles

numbers (Figure 11.10a) and the empty graphic to compose graphics (Figure 11.10b).

int

0|E|""|Ol
l.f'\'t a
2] EE aly

Graphic

N E\ lﬁ D

c§'|>

£l

X
(a) Variable a referring to values of (b) Variable a referring to values of
type int. type Graphic.

Figure 11.10. Charles’s notes illustrating how a variable gets initialized and mutated.

He uses some kind of memory diagram to show the evaluation of a = 0; a +=
2 and a = empty_graphic(); a = above(a, rectangle(100, 100, red)),
respectively.

Charles: The drawing [...] where I basically showed them that you could
see this variable name as a link to the actual thing that it is. So this
variable name now points to the integer 0. And if you change it with
the equal sign, you've actually changed the arrow, so that now the name
points to the new thing. [...] Basically first you evaluate the expression
0 + 2, you get a new ‘something’ to grasp [makes a gesture pretending
to hold something his hands], the integer 2, and now the variable name
points to that new thing, to the solution.

11.7.3.4 He explains two different ways to repeat

In the sixth unit of his teaching materials, Charles exposes his students to two different
ways of mapping a computation. Figure 11.11 shows how to turn numbers into colored
rectangles, using them as hues. The upper part uses a list comprehension, while the
lower one a for loop that in each iteration adds a new graphic to a list.

Charles: [The] for loop it’s just a repetition for them from last week,
because we did these loops last week. And they have the two code snip-
pets right next to each other, so they can really see the similarity of the
new concept above and the old concept below.

207 11.7 The case of Charles

from pytamaro import *
rectangles = [rectangle(200, 200, hsv_color(color, 1, 1)) for color in range(360)]

show_animation(rectangles, 20)

from pytamaro import x

rectangles = []
for color in range(360):
rectangles.append(rectangle(200, 200, hsv_color(color, 1, 1)))

show_animation(rectangles, 20)

Figure 11.11. Mapping done two ways: with a for loop and with a list comprehension

The loop example uses a mutable list, which looks harmless in this context but poten-
tially opens the door to further problems. As an alternative, one could use rectangles

= rectangles + [...],orthecompactversionrectangles += [...]. Thiswould
require introducing the + operator to concatenate lists.

Charles had not fully realized that using a loop this way is different from how it
was used in the previous unit. The language construct itself, the for loop, is indeed
not novel, but the high-level computation one is trying to do is different.

Interviewer: They saw loops [...] but without the append, right?
Charles: Yeah, without it. That’s true. That’s actually true.

Interviewer: Because I think those loops were printing stuff...

Charles: We had a loop where [we were] gluing things together.
Interviewer: Like reducing, yeah.

Charles: This append... [stops and thinks for a moment] is actually just
so that it’s really similar code to the list comprehension. Doesn’t it have
a similar... append is also gluing things together.

Indeed, earlier examples combined a mapping computation with the reduction of sev-
eral graphics into a single one, as the code in Figure 11.12 shows for the rainbow flag.

The students seemed to deal just fine with the list comprehension:

Charles: I think they saw the similarities because between the loop and
the list comprehension, that you can like basically place directly the in-
dividual images into lists with these list comprehensions. I'm not really
sure if they got the rectangles.append thing at the bottom, because
that’s a new concept I think.

208 11.7 The case of Charles

from pytamaro import *

ROT = rgb_color(255, 0, 0)
ORANGE = rgb_color(255, 140, 0)
GELB = rgb_color(255, 240, 0)
GRUEN = rgb_color(@, 138, 40)
BLAU = rgh_color(0, 80, 255)
VIOLETT = rgb_color(120, 0, 140)

EEEEE::;?* BREITE / 6 flagge = empty_graphic()
for farbe in [ROT, ORANGE, GELB, GRUEN, BLAU, VIOLETT]:
flagge = ... # TODO flagge = above(flagge, rectangle(BREITE, HOEHE, farbe))

show_graphic(flagge)

Figure 11.12. Starter code for students (left) and reference solution (right) to create a
rainbow flag.

11.7.3.5 He does not use the web platform but still adopts the Toolbox approach

Charles does not use the PyTamaro Web platform but the educational IDE Thonny [12],
which works in many operating systems. Other teachers in his school also use Thonny.

The IDE is tightly integrated with the exam system used by the school. Charles’s
exam involve some online coding, in the restricted environment, and some questions
that ask students to spot problems or explain the code.

Even though Charles does not use the online platform, he is still adopting the
approach of the Toolbox of Functions offline. Students are instructed to create a
toolbox. py file to store their functions and later import them when needed.

Charles: At the beginning I think the largest problem is the file system.
[...] They’re not used to file systems anymore, so the knowledge that this
has to be placed inside some... [folder] was difficult, I think. But once
that got sorted out, it worked pretty well. Well, what they do now, they
keep using their Toolbox and that’s pretty nice I think. I think it helps
understanding those things. So I think this works out pretty well, except
those file system challenges.

Charles reports bringing up explicitly in his own teaching that the personal functions
defined by students and saved in the Toolbox are no different than the ones coming
from the PyTamaro library:

209 11.7 The case of Charles

Interviewer: When they do an import from pytamaro and then there
is also an import from toolbox, can they see that it’s sort of the same
thing?

Charles: I think they can see that... That’s hard to test, if they can really
see that. But what I experienced talking with them, or at least that’s
something that I try to highlight... that it’s basically the same concept. If
someone wrote a file called pytamaro, or a library, a bit more complex,
it’s essentially the same thing. And now we can use that library, that
someone else created, and they are free to use their own library [...] I
hope at least that they can see similarity here.

11.7.3.6 He uses and praises the Judicious documentation system

While Charles does not use the PyTamaro Web platform as a programming environ-
ment, he uses the documentation that is also offered on the platform. The Judicious
system (Chapter 9) presents functions from the Python standard library (including the
built-in ones) and functions from PyTamaro with the same uniform layout. Charles
recommended the Judicious documentation also for his students in the 10th grade,
when they use functions from the random library to develop a game.

Charles: What I really like is this documentation [that is] now expanding.
You showed me a preliminary version about a year ago already [...] I
mean, that’s really cool. Even for built-in functions, these examples, and
visualizations [of the examples], etc... I think that really helped.

11.7.3.7 PyTamaro materials emphasize functions but ignore interactivity

When asked to reflect on the differences between his PyTamaro materials and the
turtle-based ones used by his colleagues, Charles brings up function definition as a
concept that is emphasized much more. Conversely, he notes the lack of while loops
and interactive programs with PyTamaro:

Charles: Functions is obviously emphasized a lot more in the PyTamaro
curriculum. That’s something that’s really... I mean, I'm teaching these
STEM students as well at the beginning of [9th grade], and I already
can spot the difference there regarding functions. That’s actually not so
intensely covered in the turtle one. But in the meantime, randomness
[...] Tdon’t cover that in PyTamaro, and they do it with turtle. I think
while loops, that’s also something I'm not covering.

Interviewer: What do they use a while loop for?

Charles: When some turtle moves while some condition is not set, it

210 11.7 The case of Charles

continues to move, and then [...] if it vanishes from the window [...] it
returns to the center of the screen. [...] while is actually pretty common

there.
Some colleagues focus on Python’s input function to create interactive programs:

Charles: Oh and of course the textual input thing. That’s something
that is not covered in PyTamaro, and they use it also to basically control
images generated by the turtle, so that you can input what kind of shape
you want and then it creates the things.

Interviewer: But in principle you could do the same in your PyTamaro
curriculum, right?

Charles: Yep, absolutely, yeah.

Interviewer: Why did you not do that then?

Charles: Ithink time restriction, because I wanted to focus on these other
concepts, and I think they actually need some more time [...] I'm basically
running out of time.

11.7.3.8 Complex features are shown to students at the beginning

The introductory material served as a first exposure to Python’s syntax, but it also
exposed students to some non-trivial features of Python:

Interviewer: [This material] is showing off a little bit of print’s features,
the fact that you can pass like multiple arguments and you have also
optional line terminators and separators. And then also a bit of arithmetic
and a little bit of string manipulation... there is also the ‘times’ operator
to ‘multiply’ a string and repeat it. I was wondering whether you felt that
this was working with the students or whether it felt a little bit too much
for this print function.

Charles: I think this actually felt a bit too much for the print function.
However one of the goals was that they can see that a comma can separate
arguments. And I think this is pretty important for later. But maybe it
might be a better place to actually do that with PyTamaro instead of the
print function.

While using functions from multiple domains can actually be positive to avoid that
students learn only in one domain, the complexity of the print function could make
it harder to grasp the general concept of a function.

Interviewer: It’s a very powerful function, in some sense. There were
these optional arguments, although you introduce them gradually... but

211 11.7 The case of Charles

there is also the fact that it’s one of these functions that can support a
variable number of arguments, and that’s sort of a special thing... [...] do
you think that they see the connection between, say, print as a function
and other functions [...] like sqrt and rectangle. Or do they have a
feeling that print is something special?

Charles: Oh! That’s a nice question! What I try is that they don’t see
the print function as so special, even though [...] it’s a kind of impure
function that does weird things, but it’s still a function. So I'd rather like
them to think that it’s just a function as the ones they create themselves.
I try to talk about that quite often.

Based on his students’ experience, Charles does not consider optional parameters a big
problem:

Charles: I think the optional arguments... that’s something that is pretty
intuitive for them. Well, because they see it with the print function
first. I mean, even the show_graphic function in PyTamaro has optional
arguments. So I think that’s not such a difficult concept.

11.7.4 On the student experience
11.7.4.1 Students feel unconstrained in PyTamaro-based projects

Charles feels that PyTamaro leaves ample room to his students to creatively explore
programming, comparatively more than turtle:

Interviewer: Do you think they have enough room with PyTamaro to ex-
plore a little bit of stuff on their own... or do they feel heavily constrained
in what they can do? What’s your feeling?

Charles: It’s a strength. I think it was harder before when I did teach
the turtle curriculum, then it was like ‘oh they had to do these things’,
and now they go off and create new stuff. So actually it’s a positive
thing. They try new experimental things and then some of them of course
discover the PyTamaro [web] platform and all these activities and they
try to do some of them. They feel rather unrestricted.

11.7.4.2 Game programming in the 10th grade without PyTamaro requires complex
code

Students in the 10th grade develop a game with Pygame, following a tutorial prepared
by other teachers at Charles’s school to develop the Snake game. That has positive
aspects:

212 11.7 The case of Charles

Charles: What I really like is that they learn to think about that main
game loop, that everything important happens there, things are prepared
and in the end drawn to the screen, and then there is another frame and
new things happen. And depending on whether you click somewhere or
whether some rectangles touch, something else happens, etc. So I really
like that they get a better understanding of that kind of logic with that
project.

But on the negative side:

Charles: There is quite a lot of code that needs to be written before
anything happens. There are quite a lot of tutorials online for them to
choose [...] and then pretty much all of those tutorials quickly introduce
object-oriented programming, which [we] didn’t look at so far. And then
the challenge is like, how much did they actually code themselves and
how much is just copy-paste from tutorial, and how much does that help
their understanding? And I mean, now these large language models,
they just program your Pygame game in a few seconds.

Charles advices his students to use the powerful language models as a coach and ask
them to suggest ways to improve it, instead of having them write code from scratch.
Interestingly, he reports that the harsh reality of programming, where one little mistake
causes the program not to run correctly, triggers in the students the realization that the
models are not omniscient:

Charles: Interestingly, this year I have quite a few students that are
shocked how bad it is the language model they’re using. [...] Usually
they use it all the time, everywhere they can, in languages mostly, [and]
history [...], they use it like everywhere. And they’re totally exhilarated
because it’s so nice and they don’t have to do anything anymore. And
because it does everything so well. And suddenly they see that ‘oh, it’s
not perfect’, it can program, it can explain, but some things are just... it
cannot do that, and they can do it better. And I think that’s a pretty nice
thing as well.

Interviewer: Interesting. I wonder whether that’s because [in language
classes] they can’t really tell the difference between when it’s working
properly and when it’s not...

Charles: Yeah, exactly. It’s probably that, yeah. And suddenly, because
the program doesn’t run, they can see that it doesn’t work. Whereas in
languages, I mean ‘it sounds OK, so it’s probably right’.

213 11.7 The case of Charles

In Charles’s experience, the models are unable to produce working programs with Py-
Tamaro:

Charles: It doesn’t work. It doesn’t know PyTamaro yet [...], whereas it
knows turtle.

Charles reports that given that his PyTamaro curriculum is quite novel, students do not
come to him with code that they do not understand:

Charles: In the game project of course that happens. But they don’t pre-
tend that it’s their code, because from the beginning I actually motivate
them to use help, the Internet, and even LLMs. They're actually quite
transparent with that. At least they try to understand. I think that’s the
key. Actually, that’s what I want, because not all of them will end up as
programmers, but probably something else.

11.7.4.3 Students do not always see why one should define functions

PyTamaro’s approach offers a minimalistic API to encourage students to define their
own functions early on. Charles notes that this could help:

Charles: If it’s done in this way where they have early on that motivation
that it actually helping them with complexity to define functions, that
helps and makes the concept less difficult.

But he also reports that students need to be explicitly asked to define functions, other-
wise the primary goal of drawing the graphic takes over:

Charles: However, if I go on, after the function [...] if I just look at
other things, they usually still ignore the functions and just write the
code without functions to quickly generate the graphics. So actually, if
they just want to have a graphic without me specifically demanding a
function, they ignore the function. They’re not like... naturally starting
a new graphic with a function. They first try to do the image and then
they transform it into a function. So it’s still kind of unnatural for them.

This post-hoc definition of functions is indeed not very useful, because an entire graph-
ics will likely not be reused again. One may still define a function to change certain pa-
rameters, such as the size, but the real benefits come when one can reuse a previously-
defined function to program bigger graphics. Writing individual functions also allows
one to test whether a part of their program produces the intended result, before inte-
grating it with other parts, which as a whole become harder to understand and possibly
debug.

214 11.7 The case of Charles

Interviewer: I guess the tasks that they are asked to solve they are not
that big. So maybe that’s possibly a reason why... [they are not defining
functions for intermediate parts].

Charles: I think it starts at the ‘rolling eyes’ activity. That’s one where I
think they see... where different sub-functions, like individual functions,
help getting the ‘rolling eyes’ to work.

Charles is referring to an activity in which students program an animation. Each frame
shows a pair of eyes at a slightly different angle. In addition to the function that gen-
erates each frame, it is sensible to also decompose each frame. Figure 11.13 shows the
starting code Charles created for that activity.

from pytamaro import *
from toolbox import circle

def one_eye(angle: int) —> Graphic:
return ... #T0DO

def two_eyes(angle: int) -> Graphic:
eyes = beside(one_eye(angle), one_eye(angle))
w, h = graphic_width(eyes), graphic_height(eyes)
return overlay(eyes, rectangle(wxl.1, hxl1l.1, rgb_color(82, 126, 176)))

eyes = ... #T0DO

show_animation(eyes)

Figure 11.13. Starting code for an activity to create a rolling eye animation. Functions
have type annotations.

11.7.4.4 Type annotations are perceived as comments

As Figure 11.13 shows, Charles normally adds type annotation to the functions he
defines. He is unsure about their effectiveness:

Charles: It’s there and I tell them that it’s there, but I tell them that it’s
optional and they can also just ignore it. I tried to really introduce it last
year and I'm not really sure how well it worked, so this time I'm basically
not deleting it, but I tell them that this is there to help them understand
what’s actually the thing, but that they can just ignore it.

Interviewer: Do you think it helps them? There is an eye function with
an angle parameter and then that angle is marked as int. Do you think
it helps them to see how to use that function, how to call that function?
Charles: I think if it’s in an example that I provide them, they can see it
and ‘oh yeah, it makes sense’. But I think they never think of it on their

215 11.8 The case of Dorothy

own, to use it on their own. It’s like basically like a comment. And it’s

actually quite similar to comments.
Given that Python environments do not always come with an external type checker,
Charles’s observations on the role of type annotations make sense. At the time of the
interview, Thonny integrated mypy" as a type checker, but possible warnings were only
shown in a separate panel named Assistant’. The PyTamaro Web platform also did
not yet support static type checking, but in late summer 2025 the client-side analyzer
(Section 7.5) was extended to include ty?, a new type checker, which made it possible
to show type errors directly on the web platform when types do not match. This new
feature should offer a more compelling case for teachers to add type annotations, as
teachers can demonstrate, and not just promise, tangible early feedback when using

types.

11.8 The case of Dorothy

11.8.1 This is Dorothy’s context
11.8.1.1 She recently learned programming in the retraining program

Dorothy has been a biology teacher for eight years. She started teaching informatics
as an additional subject roughly one and a half years ago. She learned programming
through the Swiss retraining program for existing teachers. There, she used Java for
the core programming courses, whereas Algorithms and Data Structures was offered
using Python.

11.8.1.2 She uses PyTamaro in the 9th grade with uninterested students

At Dorothy’s school, students attend a “media and informatics” class in their 7th and
8th grade, with a focus on ICT. Students then have a proper informatics course in
the 9th and the 11th grade, with two lessons per week. Last year, Dorothy taught in
the 11th grade (not using PyTamaro, covering a bit of “object-oriented programming”
with examples that were mostly using numbers and strings). In the current school year,
she is also teaching in the 9th grade, due to constraints on the number of informatics
teachers.

The curriculum at her school has been changing over the last years, with the current
version that reserves a little bit more than half a year in the 9th grade for programming.
A second programming part comes in the 11th grade.

"https://www.mypy-lang.org/
https://github.com/astral-sh/ty

https://www.mypy-lang.org/
https://github.com/astral-sh/ty

216 11.8 The case of Dorothy

Dorothy reports many students being generally passive and not interested in the
content. 11th graders even demanded to cover more ICT, as they saw that as possi-
bly more useful for their final project in the 12th grade. Most male students choose
“biology and chemistry” as their major, while most females follow an artistic path.

The new incoming students are now bringing their own device for informatics
classes.

11.8.1.3 With help, she managed to give feedback to two PyTamaro programs

First program Dorothy immediately saw a problem with the program shown in List-
ing 23:

Dorothy: I would say it’s not really thought about, because they twice
used arm. That’s actually one of my exam questions [...] ‘look at this
code and tell me why it’s not really well written’ and then I want to hear
from them that the same variable is used twice.

She then proceeded with a somewhat confusing explanation of her exam question.
When asked to rephrase her thoughts, she seemed to be focused on the possibility of a
misleading name, more than the actual mutation of a variable:

Interviewer: I'm not sure I got the point. So what would you say it’s the
problem for this [...] there is the arm variable defined twice, but what is
the problem? This code seems to work.

Dorothy: Yeah, it works. I mean if we are... it’s a beginners’ class, right?
Then it’s not really good. I tell them always to not have the same variable
twice, so that they [are not] gonna get confused.

Interviewer: So you think the problem is mainly because it’s confusing
for the students to have an inappropriate name.

Dorothy: Yes, yes. But it would also be a good example to explain them
or to get rid of a misconception. [...] First of all, variables can hold other
values [...], and on the other hand, you can show them as well.

Second program Before actual feedback, Dorothy noticed that the parameterization
shown in the code of Listing 24 is not easy for students at the beginning:

Dorothy: First of all, it’s quite a big step already for them to have kind
of parameterized the code, because they take diameter at the top and
just have to change it once if they want to change the size.

To facilitate this process, she exposes her students to code similar to this from the
beginning, to make it digestible over a longer period of time.

217 11.8 The case of Dorothy

She did not seem to notice the code duplication, until prompted:

Dorothy: I would say it’s a nice code.

Interviewer: Isee thereisoverlay(small black, big_green) twice.
Would you change that somehow?

Dorothy: Ah, yeah. True. That could be done. Just write eye and then
beside(eye, eye).

Immediately, she realized that she also uses this pattern with her students, to teach
them that they can use the same variable multiple times within an expression. She
shared an excerpt of code with two lines, augel = ellipse (200, 60, red) and
auge2 = ellipse (200, 60, red).

Dorothy: I asked a question about this. It’s ‘eye 1’, ‘eye 2’, and then take
them beside, and I wanted them to reason about that... You just need one
eye, and place it beside [itself], so that you don’t need code duplication.
This is code duplication. That’s what I wanted to hear from them, and
that would be the answer to your question as well.

11.8.2 On the choice of adopting PyTamaro
11.8.2.1 She saw the value of PyTamaro during the training program

At Dorothy’s school, a more experienced teacher created publicly available materials,
and a new teacher who is completing the retraining program also adopted those ma-
terials. She is wary of that material:

Dorothy: But I cannot deal with it because it’s too mathematical... I
mean, I understand it completely, but I don’t like to have my students
be bored about mathematics all the time. And I think they’re afraid of
informatics to be another subject, which is too comparable to mathemat-
ics. I know from some students that they really were afraid of the subject
because they thought it’s too comparable to mathematics.

This was a key reason for her to motivate students with an approach that had a graphical
output. Turtle graphics would also have satisfied this requirement. Some other schools
across Switzerland are known to adopt a textbook to guide teachers in using the turtle
approach. Dorothy confirmed that she saw that textbook, but she was not compelled:

Dorothy: During my studies, when they showed us these books and they
also distributed them freely, I was like ‘Oh yeah, I can have a look at it’
[...] For the ‘informatics didactics’ courses, I did one or two projects with

218 11.8 The case of Dorothy

Turtle Graphics, which was fine but... I mean, you have always to know

where your turtle sits and where it goes next. So it can also be confusing

to students as well. [...] I like this stuff that [prof. Hauswirth] showed

us during one course [...]
Dorothy got exposed to PyTamaro in a course on programming languages concepts
during her training. She liked the exercises she was asked to complete, and decided
that it could be a good approach also for her students.

11.8.3 On the teaching materials
11.8.3.1 Here is an overview

Dorothy developed two curricula on the PyTamaro Web platform. The first curriculum
serves as an introduction to programming with PyTamaro. Students are required to
program simple graphics with primitives and combinators, and learn about problem
decomposition, variables, operators, types, and using functions. The second curricu-
lum is focused on students defining their own custom functions, but also explores how
to create more complex graphics which require pinning with PyTamaro.

In addition to the two curricula, Dorothy also created slides that she uses to drive
her lessons. She independently developed most of the slides, while a minority of them
are heavily inspired from a slide deck we used during a summer training course.

She still does not have activities to teach loops, but she intends to cover them with
PyTamaro-based examples who are currently being developed by a colleague.

11.8.3.2 Programming concepts are introduced using multiple domains

Dorothy’s materials mostly use PyTamaro-based examples to introduce concepts. Still,
a few of the examples are in different domain, such as an example of defining a func-
tion to apply the compound interest formula to compute the amount of money after
a given number of years. In that exercise, she reports that her goal is to start from
the mathematical formula, show to her students similarities and differences (cf. Sec-
tion 5.5) when different values are “plugged in”, and finally turn those differences into
parameters.

Working within (the basics of) the financial domain is somewhat conflicting with
the goal of not using mathematical examples. Dorothy justifies her choice on the
grounds that she is worried that students conflate the library, the language, and the
actual programming concepts:

Dorothy: I wanted to have them the comparison between Python and Py-
Tamaro because... they also asked me in the defense [of my final project]

219

11.8 The case of Dorothy

Dorothy also wants her students to have the same background as the ones taking classes
with other teachers, who teach using different approaches, to be equally prepared for
the next school years. This also extends to the IDE: Dorothy mainly uses the web
platform, for which she has developed activities and curricula, but to be aligned with
the other classes, she wants to show “mathematical examples” in IDLE?, the IDE used

last week: ‘Why would you explain all the concepts with PyTamaro’? Are
there going to be students who are questioning that? And they’re going
to go out and tell all their families, friends: ‘oh, we are just programming
with PyTamaro!’. [The professor at my defense] was concerned that they
won’t see that they’re programming Python.

by the other teachers.

She remarks that using multiple environments also helps students to distinguish

between the editor and the language:

11.8.3.3 Some function definitions are more subprograms than abstractions of ex-

Figure 11.14 shows a slide that Dorothy created to teach her students how to define

Dorothy: One statement of a student was like: ‘oh, it’s so great that
Python is colored’. For example, def is orange [...] within IDLE. But
[this student] was like ‘Oh, it’s Python’, but it’s not Python that is colored
that way, it’s IDLE that is giving the color, so they’re confused if they have
just one IDE.

pressions

functions.

A confusing aspect of Figure 11.14 is perhaps that the function first declares a variable
with almost the same name as the function, and then returns that variable, as opposed
to returning directly the expression. Dorothy may have internalized this pattern from

Three increasingly more general versions of the same functions are defined.

Dorothy: They had the exercise to write a quadrat function. And thenI
showed them [these] three and asked them ‘which one is nearest to your
code’, to show them that we can abstract a little more. I mean, the first
one is not really abstract.

other, longer examples during the training courses:

Dorothy: Isaw it like this... the programs were longer, but [an instructor]
used for example my_variable and then he returned my_variable.
That’s why I used another variable and then returned it. That was one of

*https://docs.python.org/3/library/idle.html

https://docs.python.org/3/library/idle.html

220

11.8 The case of Dorothy

WELCHE QUADRAT-FUNKTION IST AM ALLGEMEINSTEN?

quadrat_1 = rechteck (100, 100, rot)

return quadrat_1

quadrat_2 = rechteck(seitenlaenge,

seitenlaenge, rot)

def quadrat3(seitenlaenge, farbe):

quadrat_3 = rechteck(seitenlaenge, seitenlaenge,

return quadrat_3

Figure 11.14. A slide showing three increasingly generic versions of a function to draw

a square.

the really first programs using the definitions of functions.

Interviewer: I see... one aspect is that you have the variable, and the
other aspect is that the variable is named very similarly to the function.
I thought that may be potentially confusing for the students, because

they kind of conflate the variable name

with the function name. And

maybe they want to call the function using the [name with an] under-

score, which is actually the name of the variable inside. [But] given that

this is so abstract, it’s hard to find a good name for those variables inside.
Dorothy: Yes, it would be better [to] just return, but since it’s one of the
starting functions I thought it’s better for them to [understand that] they

just return one thing, not an entire line of...

Dorothy did not seem convinced that it may be advantageous to introduce functions

as abstractions over expressions. Instead, she preferred to return an atomic expression

and expose students to the possibility of having
body, before returning.

multiple statements inside a function

11.8.3.4 She uses the Toolbox approach on the web platform, but not offline

Dorothy leverages the Toolbox (Chapter 8) as implemented on the PyTamaro Web plat-
form. She motivates the need for it with the slide shown in Figure 11.15. The translated
text recites: “The PyTamaro library is not very large. This requires more creativity and

programming. Which in turn boosts your programming skills”. Dorothy has thus in-

ternalized the minimalistic idea of PyTamaro.

The idea of a Toolbox is general, but Dorothy only seems to use it with PyTamaro

221 11.8 The case of Dorothy

TOOLBOX-USE

ABSTRACTION -> CREATION

= Die PyTamaro-Bibliothek ist nicht sehr gross

=> Dies erfordert mehr Kreativitit und Programmieren

=>» Was wiederum deine Programmier-Skills fordert

SAVE YOUR CREATION

Figure 11.15. A slide motivating the need for saving functions to the Toolbox.

functions. She justifies this choice on the grounds that she moves to a standalone
IDE (IDLE) when working on programs that do not require PyTamaro. She had not
considered applying the same concept across multiple files when working offline:

Dorothy: I didn’t think about it. But it would [allow] something we can-
not do in PyTamaro [Web]... for example, input, or just get something
from another [...] file.

11.8.3.5 She uses TamaroCards to introduce PyTamaro functions

After a first activity on the web platform that introduces the idea of an algorithm, with
the analogy of a “recipe”, Dorothy explains functions with TamaroCards (Chapter 6).
Figure 11.16 is a photograph she took during an actual lesson. She printed huge cards
to represent some of the PyTamaro functions to produce graphics, and created the
corresponding shapes with cardboard. Below some of the cards, she wrote the cor-
responding Python expression with chalk (e.g., e11ipse(30, 30, gelb) under the
ellipse card.

Students are expected to replicate the same exercise on a smaller scale with regular-
sized cards on a sheet of paper.

Dorothy: In the second week I did a group exercise where they had to
arrange the primitive functions and reason about what [happens] when
I put this value and that value and the third value, it is a red, or is it a big
or a small rectangle. That’s when they get used to the primitive graphics.

Students then implement these small fragments of code in an activity on the platform.
Each student writes code individually, but they can also work in pairs so that both stu-
dents write code on their device at the same time. From time to time, she demonstrates

222 11.8 The case of Dorothy

4)
triangle

dreieck
triangolo

Rl | 2

ijrtguv\

FY
ellipse

ellipse
ellisse

®

B o
g//l(/«?gg (50. <9,

Figure 11.16. Showing the five key PyTamaro primitive graphics using TamaroCards
on a blackboard. Written under some cards, the corresponding expression in Python.

some activities by writing code live.
Afterwards, she arranges the cards and connects them to form larger expressions.
This illustrates the process of composition, after having decomposed the desired graphic.

11.8.3.6 She uses type annotations extensively

Dorothy frequently adds type annotations to variables, making their type explicit. The
code excerpt in Figure 11.17 was written by her and uses the built-in type int and the
PyTamaro type Farbe (German for Color).

roteZahl: int = 90
grueneZahl: int = 120
blauezahl: int = 240

farbel: Farbe = rgb_farbe(roteZahl, grueneZahl, blaueZahl)
Figure 11.17. An excerpt of code from an activity using type annotations.
Dorothy’s first motivation seems to be that students should be exposed to types

because there exist statically-typed programming languages that require explicit type
annotations, such as Java:

223 11.8 The case of Dorothy

Interviewer: Do you think it helps [showing the types]?

Dorothy: Mmb, if it’s not helping right now, it’s gonna help for the future,
I think. Sometimes I tell them ‘Python is not the one language, you can
also code in different languages’ and so I do the comparison between
Java and Python and tell them look there you have to be aware what
variable stores what value [...]

She also uses small examples to convince students that types matter, even though her
demonstrations do not involve static type checking:

Dorothy: In the terminal, we try what is it possible to divide... floats?
Is it possible to add a number to a string, and there is where we use
[types] as well.

Interviewer: They see that some operations reveal type incompatibili-
ties... so you have to be aware of types.

Dorothy: Exactly, but still Python won't tell which data type you have to
put it [as an operand], you can actually put anything, but it might not be
able to calculate because of the type.

In a discussion of types in her materials, Dorothy also mentions some Java-specific
types. She does not expect her students to have been already exposed to Java, but
likes to leave cliffthangers:

Dorothy: Sometimes I like to just place a word or a comparison and
tell them ‘look, maybe the ones of you who are going to be more into
computer sciences... they’re going to see that’.

11.8.3.7 Variables are sometimes mutable and sometimes immutable

In an activity that introduces variables, Dorothy borrows an illustration created by
a third party to show how a variable works, with a value being placed into a paper
box. The illustrative examples are all within the domain of mathematics, showing the
numerical content of a variable repeatedly modified.

Surprisingly, even within the same activity that is supposed to introduce variables
there are also PyTamaro-based examples, but those do not perform mutation. This
suggests a difference between how a typical PyTamaro-based program is written and
all the others. Her somewhat generic answer suggests that she finds it challenging to
reconcile mutable variables, immutable variables, and constants:

Interviewer: Do you use also with PyTamaro [examples] variables that
change, or is that with PyTamaro you mostly use variables that don’t

224 11.8 The case of Dorothy

change, so you treat them more as constants?
Dorothy: Mmmbh... Mainly as constants, I think. Yeah.

11.8.3.8 Her activities favor shallowly nested expressions

Many of Dorothy’s activities contain shallowly nested expressions.

Interviewer: I guess that’s sort of a choice... maybe because you believe
it’s harder to understand the code there when it’s nested, maybe it’s even
you personal experience...

Dorothy: Maybe because I struggled as well in the beginning? [Smiles.]
And I see the 11th graders struggling. They don’t get the code which is
nested too much. I think since I [now] start from the beginning with the
9th graders, I could also in the end do more nested things.

Interviewer: I think there is a point to be made that it’s hard to trace
deeply nested expressions. It’s totally valid.

However, she mentions recommending to some groups who already did a great job in
solving an activity that nesting, with a properly indented code, could improve their
solution. In a perhaps excessively self-critical way, she realized that showing students
how they can organize nested code could help them understand it better.

Dorothy: Sometimes they ask me ‘how can I do it better?’ [...] and [was
like “Yep, just nest it’. Then you do it with an enter [to indent]. So you
go to the next line and then you see like how it’s gonna be nested more,
always to the right.

Interviewer: I see, if they indent properly, that would help them.
Dorothy: And some of them were like ‘oh, that’s great... we can really
use it because then we see how it’s tracked’ [...]

Interviewer: So maybe it’s something that they didn’t see at the begin-
ning, they didn’t realize that it was possible to do [it] like that. You can
actually break stuff over multiple lines.

Dorothy: Yeah. For sure it’s also my fault, my liking or not liking [of
nesting].

11.8.3.9 She motivates some forms of abstractions with similarities and differences

In an activity, Dorothy introduces what she called “parametrization”: avoiding to hard-
code numbers and replace them with a symbolic name. Only later in the course, she
uses a metaphor learned during the course about “similarities and differences” (Sec-
tion 5.5), the process one can use to find almost-identical code and abstract it as a
function, in which the similar parts become the body of the function, and the differ-
ences become the parameters.

225 11.8 The case of Dorothy

Finding repeated numbers and introducing an abstraction using a constant can be
an excellent way to expose students to the process when the code is still manageable:

Dorothy: For the defense [of my final project in the retraining program],
last week I read a little bit more about parameters and variables and I
was like ‘oh actually it’s not correct to have it called parameterization’
[...] because it’s still a variable. It’s rather maybe a global variable, if you
want to say so. Your question is good because it’s not thought over that
I [do] not use the comparison or the similarities and differences at that
point. I wanted to show them already [...] now [that we have] a small
code, code that is not really difficult... [...] It’s always the same number.
[The process is:] Look for the same numbers. Which number can we
exchange by just the word? Yeah, it is similarities. You're right.

From this process of abstraction over simple hard-coded numbers, one could move to
teach abstraction by defining functions, as discussed in Section 5.5.2.

11.8.3.10 Her materials introduce function definition earlier than her colleagues’

Dorothy: At least the timing is different, so I introduce functions a lot
earlier. And functions is the thing that comes last in the 9th grade for the
other teachers. They stick to the procedural, sequential programming. I
think that before lists, they do branching, and afterwards lists, and then
loops, and then functions.

For Dorothy, instead, functions come first, starting with their usage and then their def-
inition. She emphasizes that she would like her students to acquire the same compe-
tencies as the other students, as they might end up in another class with other students
in the 11th grade.

11.8.3.11 Errors are discussed early on

Early on in her slides, Dorothy presents to her students some typical common errors
made by beginners using PyTamaro-based examples. A first slide shows a NameError
that occurs when students use a function without importing it, a second slide shows an
error that results from a function being called without the argument, and finally a third
slide, which is shown in Figure 11.18, illustrates a function called with a argument of
the wrong type. The TypeError signals the attempt to show a color, instead of a
graphic.

226 11.8 The case of Dorothy

SCHRITT FUR SCHRITT — FEHLERMELDUNGEN LESEN

Docs: wrechteck #wrot #zeige grafik

from pytamaro.de import rechteck, rot, zeige_grafik

rechteck(40, 20, rot)
zeige grafik(rot)
=

® 10f1 problem

TypeError: Ungiiltiger Typ fiir den Parameter “grafiken’: erwartet “Grafik™, erhalten “Farbe’

(0]

Traceback (most recent call last):
File "/home/glot/cell.py”, line 4, in <module>
zeige_grafik(rot)

SHOW ALL STACK FRAMES

TypeError: Ungiiltiger Typ fiir den Parameter “grafiken': erwartet “Grafik , erhalten “Farbe”

Figure 11.18. A slide showing an error message with a screenshot taken from the
PyTamaro Web platform.

Dorothy: I actually planned this after having them always struggle with
errors. They were always asking ‘but it’s not working here’, ‘it’s red’, ‘it’s
error’, and then I was like ‘yeah, read the error, just read it’. ‘What does
it say?’, ‘What could you do about it?’. And sometimes they got it [...]
Interviewer: Do you think it helps showing the errors?

Dorothy: At least to reason about them. I told them ‘just read all the...
this part, and that part, and then try to figure out where could be the
problem’.

As Figure 11.18 shows, Dorothy opted for the German API of the library. She hopes
that this can get them up to speed a little bit faster at the beginning, but she admits
that she could have also used the English API and students would probably do just fine.

11.8.4 On the student experience
11.8.4.1 Students use functions easily but need help to define them

Dorothy reports heavily relying on the notation of TamaroCards, which shows functions
as ‘red boxes’, to explain what a function is and how one can use it. Her students seem
to have no issues with using functions:

Dorothy: Using [functions] is quite fine, actually. With these... I call
them ‘red boxes’, which is actually your graphical version. They take it.
You can say ‘something is happening inside this red box’, we can decide

227 11.8 The case of Dorothy

what it’s gonna be worked on, so we put in arguments and something
comes out. ‘What comes out?’ It’s a graphic. That’s quite easy for them
to get it.

Defining functions, on the other hand, requires more support:

Dorothy: I think they just need a good structure. And as you saw these
little code [snippets]: do def, colon, and then write some code, [and
then] return. They get it quite fast I think.

Interviewer: I see...

Dorothy: Except of parameterization. [Smiles.] That’s the biggest deal.
They sometimes still forget: ‘Ah, I could also do the color’, [so] that we
can choose the color... They just think about numbers, but it’s fine.

When exercises are less guided, students still tend to write big functions. Dorothy
reports, for example, that for the final project some students wrote a single, big, pa-
rameterized function for their entire graphic.

11.8.4.2 Students get creative in projects and work around the limitations

After 14 weeks of programming, Dorothy has her students work on a project focused on
graphics. She partially structures the process for them, to guide them towards defining
proper abstractions:

Dorothy: First of all, they sketch it [the graphic] on paper. They have
already to reason about ‘where can we place parameters?’, ‘which diam-
eters are gonna be the same?’, ‘which colors do we like?’, ‘can we put
them as parameters?’, ‘do we want the colors to be changed?’, ‘do we
want the height to be changed’, and stuff like that. They have to write
it down. And they have to write down as well what functions they need
out of PyTamaro.

This process took roughly three weeks. She reports that some students voluntarily
chose to put in some additional time at home as a homework. Overall, Dorothy thinks
her students appreciated it:

Interviewer: Did they like this stuff?
Dorothy: [Nods.] I thought so! How they behaved... was great in these
three lessons.

Overall, Dorothy thinks her students had enough room to explore and draw what they
wanted, despite the constraints imposed by the library:

228 11.9 The case of Emil

Dorothy: I think they had enough [freedom], and sometimes I could also
show them more. For example, they have the transparent color that they
might be able to [use to] arrange things through a transparent rectangle.

Some groups ingeniously tried to work around limitations, given that they had still not
learned about certain concepts:

Dorothy: Sometimes they came and we could figure out that the code
is maybe not really readable, and maybe they could change it like that
or this. Two groups actually wanted to do a watch. And they were like:
‘how can we arrange it?’. And I was like ‘actually, you don’t know loops
yet, but you could figure out... maybe just put this, and this, and this
next to each other, and then take this quarter [of a circle], rotate it half
a quarter more, have a half of a watch and then change it again. So they
figured out ways which might be complicated in a way, but we can discuss
them later on.

11.9 The case of Emil

11.9.1 This is Emil’s background
11.9.1.1 He is an experienced biology teacher who recently learned programming

Emil has been a biology teacher for almost twenty years. He attended the national re-
training program to teach informatics, where he learned programming primarily using
Java. He is currently in the middle of the third year teaching informatics.

11.9.1.2 He teaches with PyTamaro to students in the 9th grade

At his school, students are first exposed to programming in the 7th grade, but the core
part is taught in the 9th grade. As a transition period is currently ongoing: students
currently in the 9th grade will be the last cohort that did not attend programming
lessons in the 7th grade.

The programming part spans roughly two-thirds of a semester, corresponding to
approximately 12 weeks.

His school follows a “Bring Your Own Device” policy, with the requirement that stu-
dents must have a device equipped with touchscreen and a pencil. For him, using web
platforms that can work across different devices and operating systems is essentially a
requirement.

229 11.9 The case of Emil

11.9.1.3 He gave quick and good feedback on two PyTamaro programs

First program At first, Emil noticed that the program code in Listing 23 lacked proper
imports. Then, he immediately noticed that a variable was being reassigned:

Emil: We have two variables with the same name.

Interviewer: Why would you say that [is a problem]?

Emil: Well, because you're overriding what you just had. In line 3, it’s
not really helpful to name it arm because it’s actually a cross already.

Second program When analyzing Listing 24, Emil quickly pointed out the lack of
abstraction:

Emil: In line four and five [...] it’s rather repetitive. Instead of saying
overlay(small black, big green) [...] again [...] you could come
up maybe with a separate name for that.

When students are ready to define their own functions, Emil suggests that they could
define one to create a circle given its diameter. He also stresses the importance of giving
appropriate names to abstractions, something his students at times struggle with:

Emil: We could have a function with a parameter called diameter. But
that depends on what the students know already. Would be nicer maybe
to have a function called circle instead of ellipse. It’s helpful to give
graphics a name and use the name instead of the full function with all
its arguments. That’s what I see with my students. Some tend to give
names for graphics that absolutely make no sense at all. And then they
cannot remember what their names actually stand for.

11.9.2 On the choice of adopting PyTamaro
11.9.2.1 PyTamaro enables him to go beyond turtle graphics

Emil claims that his students come to his lessons having already had some exposure to
programming in Python with turtle graphics. PyTamaro, for him, is thus an opportunity
to offer them different materials:

Emil: [My students] already have a background, they had these intro-
ductory lessons with TigerJython [doing turtle graphics]. It’s about to
change, and that’s why I decided it would be much better to come up
with something different.

Emil created a PyTamaro curriculum as his final project for the training program. The
current school year is the first year he is using this curriculum; in the previous two

230 11.9 The case of Emil

years, he also used TigerJython [259], a variant of Python often used in Swiss schools
in combination with turtle graphics.

Graphics-based exercises can appear too simplistic for some students and look de-
tached from authentic problems that could be solved with programming. Using PyTa-
maro avoids dealing with certain aspects of programming with turtle graphics, such as
figuring out the right angles, but it may introduce other forms of accidental complexity
(such as the annoyances related to pinning graphics to compose them, even though
Emil does not bring that up):

Emil: I got the feedback, from the better students usually [that Tiger-
Jython] is not real programming: ‘why are we just drawing with a funny
turtle?’, ‘why are we not doing real programming stuff’.

Interviewer: Maybe those students have done some extra courses or
projects?

Emil: Some of them. What I observed is that most of them are not really
good at programming, yet they think they are. They failed in my ex-
ams quite hard sometimes. They are able to import funny modules from
wherever and produce programs that can do fancy things, but when you
ask them details concerning variables or so, they actually have no clue
about the basics. They just don’t want to learn. If you face them with
something that’s simple, like turtle graphics output or the code behind it,
or also PyTamaro, they tend to get bored on one side, but also frustrated
they cannot even come up with solutions. With TigerJython tasks... it
was often about coming up with the right angles to turn the turtle from
left to right, or in the right direction. And that’s what they couldn’t do.
That’s why they got frustrated and said ‘that’s not real programming’.
This was just a handful of pupils who had this type of attitude or opin-
ion.

Emil is the only teacher in his school who is currently using PyTamaro. He has three
other colleagues who teach informatics. Two of them are also teaching 9th grade stu-
dents, but they are not using the same materials as he is using.

Emil reports that his colleagues are following a special curriculum using robotics
from ETH Zurich. They got the materials from the university, but those materials still
required inputs and adaptations because they had not yet been used in practice.

231 11.9 The case of Emil

11.9.3 On the teaching materials
11.9.3.1 Here is an overview

As part of his final project for the retraining course, Emil has developed an extensive
curriculum on the PyTamaro Web platform. The curriculum features graphics inspired
by biology, such as flowers.

It is divided into five main units. The first unit covers fundamental concepts to
introduce programming, Python, and PyTamaro. The second unit is titled “modular
programming and decomposition” and discusses how to break down a graphic into
smaller graphics and how to define custom functions to abstract. It also shows how to
use pin to create more complex graphics. The third unit consists of five mandatory
activities (and some optional ones) to teach repetition, which is achieved using a for
loop. The fourth unit covers conditionals, achieved using if statements. The fifth and
last unit completes the course with ideas for a project.

In addition to the curriculum on the platform, Emil also created a small set of slides.

11.9.3.2 A number of unplugged activities use TamaroCards

Emil uses TamaroCards (Chapter 6) for an unplugged introduction to programming.
He asks his students to build a number of graphics of increasing complexity purely
with the cards:

Emil: They had to build the Swiss flag graphic using paper first... and
then harder graphics. The first task we did together. I told them, okay,
that’s the way to combine them. That’s how to bring an output of another
function or combinator, beside or ueber [German for above], as an
argument into a parameter of another function or combinator.

A minority of students were reluctant to take part in this activity that they may have
considered too childish. However, Emil reports that they admitted in the end that the
cards can be a useful bridge to textual programming:

Emil: It worked pretty well for some groups. They could do it in groups
of two or three people, and some were highly motivated. They liked
the idea of using the cards, the glue... others said ‘do we really need to
do this?’, ‘can we not just do the coding part?’. But I'd say in the very
end also the latter had to accept that it’s hard to program without an
introductory part with something on paper.

Emil also reports that to solve the more complex tasks, some students took a piece of
paper and tried to draw it on paper first, effectively practicing decomposition.

232 11.9 The case of Emil

Emil asked his students to complete four tasks with TamaroCards. He had planned
to ask them a fifth one, in which they should have composed a graphic of their choice,
but students did not want to use cards anymore: they felt it was enough for them. At
that point, Emil encouraged them to write the code but not show the output to their
neighbors, and make them guess it. The activity worked well, although some students
discovered the limitations in how they could position the graphics:

Emil: They really liked [it]. Some of them tried really complicated stuff.
I have a Chinese student. He wanted to build a Chinese flag. Many of
them were a bit unhappy that you cannot position the graphics wherever
you want. At that point, indeed, students had only seen the basic combi-
nators like beside or above and had not seen more flexible positioning
with pin.

In one of the very first lessons, Emil showed to his students the slide reproduced in Fig-
ure 11.19. It featured the Judicious documentation for PyTamaro’s el1ipse function.
Emil did not seem to make explicit the connection between the cards and the diagram
visualized in Judicious. The focus was on the difference between the parameter names
and the argument expressions, which are shown in the examples:

Emil: The point here was to repeat the terms parameter and argument.
At that point, they mixed up arguments and parameters.

Funktion aus der Bibliothek pytamaro.de o i- .
ellipse(breite, hoehe, farbe)

(-)

breite

hoehe .
ellipse >

farbe

Argumente

- J

Erzeugt eine Ellipse mit der gegebenen Breite und Hohe, gefiillt in der gegebenen Farbe.

Wenn Breite und Hohe gleich gross sind wird die Ellipse zum Kreis mit dem entsprechenden Durchmesser.
Beispiele

Parameter \ zeige_grafik(ellipse(100, 50, rot))

breite .

; zeige_grafik(ellipse(75, 75, schwarz))

Riickgabe
Eine Grafik mit der gegebenen Ellipse 3 ‘

Figure 11.19. A slide created by Emil showing the Judicious documentation for one of
PyTamaro’s functions, with some annotations.

Overall, Emil claims that his students did not have trouble understanding the no-
tation of the TamaroCards:

233 11.9 The case of Emil

Emil: It actually worked pretty well. Of course it’s always 80 % are fine,
20 % fail. But in general it worked pretty well, I can say.

However, he is ambivalent on how well the students transferred from the cards to the
code:

Emil: That part of the lesson was quite hectic. At least one group did
other stuff or didn’t want to use the glue, so the cards were moving back
and forth, and so there were problems. Other groups used the cards as I
told them, they still struggled because they didn’t really understand the
principles behind it.

He did not seem to tell students explicitly how to turn the cards into syntactically
correct Python code, and this may explain part of the difficulties.

To help them, Emil tried an activity in which students had to interpret a given
Python code. The whole class was supposed to guess. He admitted that the names
were unfortunately rather telling and revealing at times, and thus students probably
relied on those names to guess the correct output, instead of accurately tracing the
program.

Emil: As soon as these telling names were gone, they were faced with a
task where they really have to think about the code. But still it was their
very first time where they came across code they haven’t seen before, so
I was not surprised that it was a hard task for them.

11.9.3.3 Function definition comes early in the curriculum

Emil’s curriculum includes the definition of functions before repetitive and conditional
computation. He is well-aware of the radicalness of proceeding this way, compared to
more established approaches. At the beginning he was fearful, but after having tried
his activities with actual students, he sees this as a viable choice:

Emil: For the moment I'm quite happy, but of course that was a big is-
sue right from the beginning. I'd say that’s the biggest difference between
TigerJython and PyTamaro. I also had discussions with [a university pro-
fessor]; he said ‘you cannot start with functions, that’s far too much from
the beginning’. But now when you're asking me, I'm quite surprised how
well they took it.

11.9.3.4 Decomposition is only discussed using the graphics domain

Emil’s materials mostly talked about modularization and decomposition within the do-
main of graphics. He could not make extensive comparison with decomposition in

234 11.9 The case of Emil

other domains, mostly due to time constraints:

Emil: We don’t have that many lessons [...] that’s the main reason why
I had to cut it down to the very basics. It’s fantastic to teach it with this
graphical output, just as it was with the turtle graphics. Because here
you quite easily see what your mistakes are.

As an example, he brings up an activity to draw vertical or horizontal leaves:

Emil: You cannot just switch from above to beside, because then you
see you have still the same ellipse standing upright next to the rectangle
standing upright.

During the interview, Emil asked for a recommendation of an example on how to in-
troduce the concept without using PyTamaro. As a common example often used in in-
troductory programming, the bigger problem of computing the solutions of a quadratic
equation has as a subproblem computing the discriminant.

11.9.3.5 There is no project due to limited classroom time

In the fifth unit of his curriculum, Emil prepared some more advanced activities meant
for those students who are faster than the rest of the class. This additional material is
related to biology content.

For the entire class, he has not planned any final project yet, reporting not having
enough time for project-based work.

He is free to take this decision as the school has a curriculum which specifies the
topics to cover, but not how many lessons per topic. Teachers can therefore be quite
independent and free to focus on what they deem most important.

11.9.3.6 All examples use the German API of PyTamaro

Emil uses the German API throughout his materials. He reports making that choice
with the intent of helping the students.

However, he admits that sometimes students also see the English API (e.g., on the
starting code of the Playground on the PyTamaro Web platform), and if they try to
import the German names completing an import statement that uses the English API,
this would result in an error.

He is generally unsure about how much the localized API actually helped in prac-
tice.

235 11.9 The case of Emil

11.9.3.7 Errors are presented at the very beginning

Emil reports having had a better experience with the error messages provided by the
TigerJython platform, which features a custom parser to provide specialized error mes-
sages for certain common mistakes made by novices [147]. Those messages are also
localized.

Emil: My experience is that students get frustrated quite quickly when
they don’t understand the error. With TigerJython, that’s a big plus be-
cause their engine gives you quite nicely shortened error messages, often
in German. Here students tend to give up or be shocked at the beginning
when they see... it’s all red, it’s all wrong.

Issues with error messages can be exacerbated by notebook-style environments such as
the PyTamaro Web platform, where an error in a certain code cell affects all the code
coming after, potentially even in different code cells:

Emil: On PyTamaro Web, if you have an error somewhere in line 2 [in
an earlier code cell] and you’re in a code cell starting from line 20 and
you haven’t managed to deal with the error in line 2, you still don’t get
the correct [output].

Emil’s observation inspired a new feature on the PyTamaro Web platform. When the
traceback for an error refers to a line of code that occurs before the current code cell, a
message replaces the error that would be shown (Figure 11.20), informing the student
that the source of the problem is in a previous code cell.

print("Hi")

O]

<¢;| An error occurred in a previous code cell. Fix it before running this code cell. GO TO ERROR A

Figure 11.20. An error message on the PyTamaro Web platform indicating that the
current code cell errors because of an error in one of the previous cells.

Emil reports that his decision to expose students early on to errors seems effective
in reducing their fears:

Emil: That's why I wanted to give an introductory chapter saying: errors
are completely normal. It’s helpful if they don’t get frightened. That’s
actually working pretty well. Some students just don’t read, but that’s

236 11.9 The case of Emil

a general problem. They don’t read any sort of instructions. They just
ask me or ask their colleagues, who tell them read what’s given in the
instruction. And they still don’t do it. They want to have a nice output.

11.9.4 On the student experience
11.9.4.1 Students exhibit creativity with PyTamaro

Despite having created activities on the web platform, Emil still sees the teacher as nec-
essary. He is energized by the new materials, and reports students exploring creatively
with PyTamaro:

Emil: It does really need the teacher. My curriculum is not meant as a
self-explanatory engine that can be given to the students and let them
do it for 10 weeks. The experiences I make at the moment with these
two classes are so valuable, but also energy consuming. Every lesson is a
new adventure for me too. It’s interesting, it’s really exciting. I was really
nervous in the very beginning about how PyTamaro is actually perceived.
Is it actually something the students like? Do I need to go back and say,
okay, it doesn’t work? But I have to say it does work so far. And the
students like it. I have some very good ones that come with stuff they
did at home. Without any need to do with it, just because they were
interested in a problem and they really tried to come up with a solution.
That’s great.

He was fearing that an approach perceived by some as “advanced” could not work
with his students, as many of them focus on modern or classical languages are not on
mathematics or natural science:

Emil: It seems to work so far. I'm not so sure about the more challenging
parts coming up... [when the] code pieces are getting bigger.

11.9.4.2 Students embraced the Toolbox approach

The Toolbox is intended as a mechanism for storing commonly needed functions. Not
every function students define has to be part of the Toolbox. However, the first activity
in Emil’s curriculum that asks students to define their own function, also asks them to
save it to the Toolbox. Emil feels that the approach worked pretty well:

Emil: We continued with the next activity [...] and at the very end of
that activity they have to write a function for a square. And not just one,
but several students ask me: ‘shall we save that function to the Toolbox
as well?’

237 11.9 The case of Emil

Indeed, a function to draw a square is an excellent candidate for the Toolbox. Despite
that, there is a risk of students conflating the ideas of defining functions and saving
them to their personal library. Emil confirms that this happened, but was not a major
problem:

Emil: There was one student who asked whether he should save the wa-
termelon function to the Toolbox. I said, well [...] no, not really.

In general, Emil’s students got acquainted well with what seems a rather smooth pro-
cess for saving a function to the Toolbox:

Emil: I was quite surprised actually, because it’s not that easy, right?
You [on the platform] wrote [some instructions as] an introductory part.
That’s quite clear to me at least: remove unnecessary code, stick to the
definition itself, and so on. Of course I showed them how to do it with
the circle function. We did it together. Maybe that’s why it was easy.
The problem with this activity is that all the code cells are connected and
further down they want to draw a new circle and they don’t need to write
the import line [from the Toolbox] because the circle function is already
imported or written on top.

11.9.4.3 Students can generally deal with nested expression

The code in one of Emil’s activities used a single, deeply nested expression to create the
graphics of a simple watermelon. Emil structured the starting code, which is shown in
Figure 11.21, over many lines, instead of having one very long line. He reported being
surprised that many of his students completed the activity relatively quickly.

zeige_grafik(
ueberlagere(
ueberlagere(
ueberlagere(
ueberlagere(
ellipse(..., 100, dunkel_gruen),
ellipse(..., 100, hell_gruen)
),
ellipse(..., 100, dunkel_gruen)
)
ellipse(..., 100, hell_gruen)
),
ellipse(..., 100, dunkel_gruen)
)

Figure 11.21. Deeply nested expression to compose a “watermelon” graphic, with the
editor showing indentation guides.

However, a small incidental detail, and not nesting, was puzzling for some:

238 11.10 We synthesized findings across cases

Emil: [Vertical lines.] That’s what confused some of them. ‘Why are
there some extra vertical lines?’ But apart from that, they were ‘OK, the
code is getting bigger and bigger’, you can have it a lot smaller when you
use names [for certain subexpressions].

The vertical lines of Figure 11.21 are actually just indentation guides shown by the
code editor to help users quickly match indentation levels.

11.9.4.4 The neutral element for graphics is a challenge

With a more advanced class, Emil piloted an activity from the third unit of his cur-
riculum that was supposed to teach repetition using graphics as a domain. The main
problem he encountered was with using an empty graphic as the initial value for an
accumulator variable:

Emil: Some of them really struggled with the idea of an empty graphic.
‘What do we need it for?’. Here it would have been helpful to have a real
world example with numbers, maybe that they know a bit better.

However, using an empty graphic is not a strict necessity, but a convenient neutral
value. One could, for example, initialize the accumulator to the first graphic, similar
to what one can do by initializing the accumulator to the first number of a list when
trying to find the list’s minimum value.

11.9.4.5 Faster students can explore activities on the web platform

A benefit of using the PyTamaro Web platform, according to Emil, is enabling students
who are faster at completing the regular activities he created to discover and work on
other, already available PyTamaro-based activities.

11.10 We synthesized findings across cases

Despite the regional and school differences pointed out in Section 11.1, all five cases
focus on teachers in Switzerland and the mandatory course in informatics. It is now
time to analyze the results of the five cases presented in the previous sections to identify
common themes.

Case studies are not meant to provide results that will necessarily generalize to all
teaching contexts. Indeed, this multiple-case study revealed an intricate set of choices
made by the teachers, that are highly dependent on contingent factors in their local
context.

239 11.10 We synthesized findings across cases

The number of school hours devoted to informatics, the presence of more experi-
enced colleagues, whether students may end up continuing their informatics education
with different teachers, the pedagogical approaches traditionally used in a school to
teach programming, the major chosen by the students, and the level of programming
maturity of the teacher are all factors that affect how PyTamaro is used in practice.

The analysis of the results attempts to abstract over the individual differences to
formulate broader claims. This partially satisfies the provocatively bold position of
Healy [114], who vehemently protested against sociological studies that attempt to
maintain infinite nuance at all costs. Complaining about the ever-growing complexity
of modern social theories, Healy mocked prototypical researchers who “call for the
contemplation of complexity almost for its own sake or remind everyone that things are
subtler than they seem”. And continues: “Theory is founded on abstraction, abstraction
means throwing away detail for the sake of a bit of generality, and so things in the world
are always ‘more complicated than that'—for any value of ‘that’.” [114].

With this in mind, we illustrate the results of our abstraction over the cases, an-
swering the research questions presented in Section 11.4.2.

11.10.1 On the choice of adopting PyTamaro

Our first research question aimed to investigate the factors that drove teachers to adopt
PyTamaro. Two key aspects emerged: the need for graphics as a motivating domain,
which PyTamaro offers as a novel approach to graphics, and the opportunity enabled
by the retraining program to create new teaching materials.

11.10.1.1 Graphics is seen as a motivating domain, and PyTamaro as a novel ap-
proach to graphics

High school students come from a variety of different backgrounds: Ada teaches stu-
dents who choose modern languages and economics as their major (Section 11.5.2.1).
Barbara has a class with students who choose music, and another “elite” class of stu-
dents attending a bilingual program (Section 11.6.1.2). Charles teaches a smaller
course to a dozen different classes, out of which at most two are composed of stu-
dents who choose a scientific major (Section 11.7.1.2). Dorothy’s students study either
“biology and chemistry” or arts (Section 11.8.1.2).

This degree of diversity stimulated teachers to develop a curriculum that would
be appealing to their students. The perception that informatics is too close to mathe-
matics has also been voiced as a concern (Section 11.8.2.1). In this context, graphics
is seen as a domain that can elicit the interest of students who, by and large, did not
choose to study computer science. The difference is striking with students who choose

240 11.10 We synthesized findings across cases

a STEM major: Charles notes how the domain of mathematics would probably work
well without hiccups for them, but even those students do not dislike working with
graphics (Section 11.7.2.1). However, learning to program using the graphics domain
can raise concerns of authenticity for a minority of the students, as Emil reports (Sec-
tion 11.9.2.1).

Turtle graphics is a popular approach to teaching programming within the graphics
domain. All teachers who are part of the study have experience with turtle graphics:
as students themselves, as teachers, or as having colleagues who are currently teaching
with it. For example, Barbara (Section 11.6.1.2) and Charles (Section 11.7.1.2) have
colleagues who are teaching with turtle graphics. Turtle graphics is increasingly pop-
ular and embedded even in activities students do when they are younger, such as in
middle school or in extracurricular activities that may even start from primary school.
Some primary and lower-secondary schools in Switzerland include some activities in-
volving programming using Scratch, effectively exposing students to turtle geometry.

In this sense, the choice of adopting PyTamaro is seen as a “fresh” approach that can
go beyond what students have already experienced, at least partially (Section 11.9.2.1).
The purported conceptual benefits of PyTamaro are exploited by the teachers, but were
not mentioned as the key reasons for the adoption. Instead, teachers focused on iden-
tifying the problems with the previous approaches. Barbara and Emil noted that stu-
dents struggled with figuring out the right angles in turtle geometry (Sections 11.6.3.6
and 11.9.2.1). This offers one more piece of evidence that the turtle’s principle of “body
syntonicity” [194] is not enough to prevent student difficulties with angles [63].

11.10.1.2 Dedicated time during training was essential to develop new teaching
materials

The national retraining program was essential for all five teachers to adopt PyTamaro.
The program was instrumental in two important ways.

First, in one of the courses that were part of the program, teachers were exposed
to Python as a programming language and some of their assignments were based on
PyTamaro. This allowed them to familiarize themselves with the library, get exposed
to some plausible exercises for beginners, and assess first-hand the level of engagement
the approach could generate in their students. All the five teachers had already some
experience teaching programming, which helped them to compare the PyTamaro ap-
proach with the previous approaches they used. Those approaches were mostly based
on materials developed by colleagues at their schools.

Second, the Swiss retraining program required teachers to independently work on
a final project. The project is worth 30 ECTS (European Credit Transfer and Accu-
mulation System), formally corresponding to 750-900 hours of work. All five teachers

241 11.10 We synthesized findings across cases

were unanimous in saying that the “protected” time offered by this project was not only
instrumental but essential to create the new materials.

The PyTamaro Web platform offered hundreds of activities and one curriculum
aimed at beginners that covers fundamental concepts starting from zero. There is no
textbook that aims to cover the entire part of programming of the mandatory com-
puter science courses. This was seen as a significant obstacle for adoption by Barbara
(Section 11.6.2). Furthermore, the number of lessons available to each teacher varies
considerably: as an example, Ada’s materials need to cover more than twice as much
as Charles’s. For these reasons, teachers felt the need to develop their own materials.

Developing materials was a significant endeavor, but Ada notes that the payoff is
significant, especially for teachers like her who are still deepening their programming
knowledge (Section 11.5.2.1). The need for this sense of ownership by the teacher
over their materials should be taken into account when trying to “impose” tools or
pedagogies onto the teachers.

While the degree of autonomy granted by the teachers to their students varies, none
of the five teachers who were part of this study developed materials that are supposed
to be consumed in complete autonomy by their students. This aligns with the findings
of Levy and Ben-Ari [162], who note how the issue of how to keep the “centrality of
the teacher” is essential to adopt a teaching innovation.

11.10.2 On the teaching materials

The second research question investigated how teachers translate the principles em-
bodied by the PyTamaro approach into their teaching materials. We found that teachers
successfully use PyTamaro to introduce most programming concepts, emphasize func-
tions early on, and adopt the Toolbox approach. On the other hand, problem decom-
position is discussed only with respect to graphics, and the transition from immutable
to mutable variables is problematic.

11.10.2.1 Teachers use graphics to introduce most programming concepts

One of the key goals of PyTamaro is to enable teachers to introduce programming
concepts directly using graphics, instead of presenting graphics as an additional domain
to be used for further practice.

With some help, all five interviewed teachers were able to point out the major issues
in the two programs we used as a minimalistic form of assessment. This provides us
with a basic level of confidence in their answers when it comes to programming.

Especially in the case of teachers with very limited classroom time, such as Charles,
programming concepts are introduced using the graphics domain with PyTamaro. A

242 11.10 We synthesized findings across cases

first lesson introduces the idea of programming and may have students type in and
execute their first chunks of Python code without PyTamaro, but this only serves as
an initial overview of what it means to program. With the exception of Ada, who is
currently not using an unplugged approach, the other four teachers all begin their
curricula with unplugged activities using TamaroCards, the tangible notional machine
presented in Chapter 6.

Given that some courses are split across two school grades, and that classes can be
remixed with students ending up following the second year with a different teacher,
a crucial concern for teachers in this situation is to also present the concepts using
a different domain. While it is not the primary goal, showing the same concept to
students in multiple domains may also help with generalizing the idea they learned
and with transferring it to a different domain in the future.

All teachers use PyTamaro to introduce the concept of “custom”, “personalized”
functions, i.e., the definition of functions. We discuss this specific concept of function
definition in the next section.

11.10.2.2 Defining functions is emphasized early on

At the level of the teachers analyzed in this case study, a key operationalization of
abstraction is the ability to define functions.

All curricula developed by teachers introduce functions early on. This is the most
significant difference expressed by the teachers regarding their curricula, compared to
what they themselves used to do, or to what their colleagues do in parallel classes.

Ada developed a curriculum on the web platform dedicated to functions and presents
faded examples with partially implemented functions to be completed by her students
(Section 11.5.3.2). Emil’s materials also cover the definition of functions before other
topics that often come earlier in popular approaches for introductory programming,
such as repetition with loops or conditionals with if statements. The same happens
in Charles’s notes (Section 11.7.3.7) and in Dorothy’s curriculum (Section 11.8.3.10).

The idea of recognizing opportunities for abstraction by playing “a game of sim-
ilarities and differences” (which we presented in Section 5.5) is still not adequately
exploited by teachers to motivate the need for defining functions. A reference to this
process only appears systematically in Barbara’s slides, as she borrowed a subset of the
slide we authored for a summer school with PyTamaro.

11.10.2.3 The Toolbox approach is widely adopted

The approach of using the Toolbox of Functions, described in Chapter 8, has been
adopted by all teachers. The minimalism of the PyTamaro library makes it almost an

243 11.10 We synthesized findings across cases

imperative to define functions that are later used to program more complex graphics.

Even Charles, who is not using the web platform (Section 11.7.3.5), translated the
approach into a “local” setup with multiple files that can be used in a regular IDE.

How to implement the idea outside the web platform is not obvious, however:
Dorothy admitted not having thought about that possibility (Section 11.8.3.4).

The analysis of the teaching materials also revealed a suboptimal aspect in how
teachers are using the Toolbox. At times, the Toolbox is introduced together with the
very first definition of a custom function. It is true that the lack of commonly needed
functions such as square encourages defining and saving them in the Toolbox as soon
as possible, but the act of defining a function and saving it to the Toolbox should not
necessarily always go hand in hand. When that happens, teachers like Emil have to fix
the misconception, instructing their students later on that not every function needs to
be saved in the Toolbox (Section 11.9.4.2).

11.10.2.4 Decomposition is mostly discussed in the domain of graphics

Most teachers present the idea of decomposing a problem into smaller parts as a generic
skill. Ada even related this to processes used in literature to analyze a text (Sec-
tion 11.5.3.4).

All curricula encourage students to think about how to decompose a graphic and
program each sub-graphic in isolation. This is also the case for the final projects, which
usually consist of a larger graphic. When the problem (drawing a graphic) becomes
bigger, the need for decomposition becomes more pressing.

However, discussions of problem decomposition outside the graphic domain remain
shallow.

On the one hand, this is an inherent limitation of the PyTamaro approach, which fo-
cuses on decomposing a graphic. We argued, using the lens of programming language
theory, that this graphical decomposition process directly maps to program (summa-
rized by the motto “the structure of the graphics drives the structure of the program”,
Section 5.4). But there is likely still a need to observe this process in other domains
for students to form appropriate generalizations.

On the other hand, this may be explained with the very limited time available to all
the teachers, which prevents them from illustrating and contrasting several examples
in multiple domains.

244 11.10 We synthesized findings across cases

11.10.2.5 Teachers struggle to reconcile the ideas of (im)mutable variables and con-
stants

The concept of a variable is ubiquitous in introductory programming. A wide body of
literature discusses the difficulties novices face with the concept [287, 244]. The ap-
proach encouraged by PyTamaro emphasizes immutable variables, referred to as con-
stants (e.g., TamaroCards such as Figure 6.7 are commonly referred to as constants).
Table 11.1 aims to clarify three distinct senses for the broad concept of a variable, us-
ing terminology from mathematics and the tradition of “functional” and “imperative”
programming.

Mathematics “Functional” Programming “Imperative” Programming

Constant Constant Constant
Variable Variable Immutable Variable
— Mutable Variable Variable

Table 11.1. Three distinct senses for the broad concept of variable as it is commonly
referred to in mathematics, “functional” and “imperative” programming.

In a first sense, we have constants that are in some sense the only “true constants”:
names for values that are supposed to be universal and valid across programs. These
constants are commonly found in libraries, which are indeed persistent, reusable ab-
stractions. The pi constant from Python’s math library or the red constant from Py-
Tamaro refer to, respectively, the ratio between the circumference of a circle and its
diameter, and the pure red color.

At a second level, we have the concept of variables as names bound to values in a
specific region of the program during a certain program execution. The term “variable”
is reasonable, because a name may assume different values (i.e., may vary) across dif-
ferent program executions (e.g., a variable favorite number standing for the user’s
favorite number) and even within a single program execution (e.g., the parameter vari-
able a of a hypothetical function min(a, b) that is called multiple times to compute
the minimum of two numbers). This concept, as adopted in “functional” programming,
matches the mathematical concept of variables. Students are used to the fact that a,
b, and c in the Pythagorean equation a? + b? = c? assume different values. It is not
uncommon, for example, to speak of taking the formula and plugging in some numbers
to replace the variables. This is no different than the “substitution model” [3] which
can be used to evaluate expressions that include variables in this sense.

At the third level, we have variables in the sense of named memory locations, as

245 11.10 We synthesized findings across cases

emphasized by the imperative view of programming. This is also the most common way
in which variables are discussed in introductory programming. When the literature
speaks of novices’ difficulties with variables, it is this sense of variable that is implicitly
being used.

To emphasize the difference between the second and the third sense, “functional
programmers” tend to explicitly use the attribute mutable to designate this kind of
variables. Symmetrically, “imperative programmers” use variables without any modifier
in the third sense, and talk about immutable variables when they are referring to the
second sense.

Most programming languages in use today, and especially those commonly used
in education, offer by default variables in the third sense when defining a name. Java,
for example, requires adding the final modifier to explicitly designate a variable as
immutable; Python does not make this possible unless one is using rather advanced
and cumbersome techniques. Perhaps, it would be sensible to refer to mutable vari-
ables as assignables, a contraction of assignable variables, instead of variables, given the
confusion the latter can cause.

As things stand, however, nearly all introductory programming classes at the school
level present “variables” with the term variable and use the third sense above: named
memory locations that can be reassigned. The five teachers in this case study took their
two programming courses in the retraining program using Java, in which variables are
mutable by default. Their colleagues in their schools teach using Python and also adopt
this approach. The entire context surrounding them considers variables in the third
sense.

However, the existing materials for PyTamaro use the term constant to emphasize
the second sense discussed above. It is not uncommon to denote this second sense with
“constants”: the “roles of variables” framework also characterizes this particular use of
variables in beginner programs as “constants” [226].

Given this landscape, it is perhaps unsurprising that teachers struggle to make sense
of three distinct meanings.

Charles only introduces variables when they are needed, just before covering repe-
tition with loops. His materials properly raise attention to this fact by using a memory
diagram (Section 11.7.3.3). Variables contain arrows that point to objects. Assign-
ments update these arrows.

Dorothy uses the “variable as a box” metaphor, and introduces variables rather early
in the curriculum, even though they are not necessary to create PyTamaro graphics at
that point (Section 11.8.3.7).

Barbara’s materials stay close to the original slides we created to teach with PyTa-
maro and thus consistently use the term constant for the first part (Section 11.6.3.4).
Before repetition, she also introduces mutation and uses the box metaphor for vari-

246 11.10 We synthesized findings across cases

ables. In any case, she is aware of at least some of the limitations of that metaphor,
such as the fact that a variable can be used multiple times in an expression.

Ada also uses the box metaphor and adopts the term variable from the beginning,
with the exclusion of the constants defined in the PyTamaro library. Effectively, she
only uses the first and the third sense of Table 11.1.

Emil’s curriculum just before introducing repetition discusses how, up until that
point, the term variable had been avoided deliberately. He introduces it at that moment:
there is no visualization, but it is said that a variable can be taught as a container into
which you place a value.

If teachers did not use loops to achieve repetition, it would be possible to stick to
the second sense of “variables”. The transition from the second to the third meaning
demands a more elaborate conceptual model of program execution, and should be
discussed explicitly and with utmost care.

11.10.3 On the student experience

Finally, the third research question explored the experience of students with PyTamaro,
analyzed indirectly through the teachers’ comments. We found that defining functions
is challenging but doable for students, and that the limitations of PyTamaro do not
make students feel excessively restricted in what they can draw.

11.10.3.1 Students are challenged by defining functions, but not overwhelmed

As highlighted in their teaching materials, all teachers introduce the definition of func-
tions earlier than most other curricula (Section 11.10.2.2).

Ada notes how her faded examples help students practice the syntax for function
definition, but the more “theoretical” aspects of the concept put off some students
(Section 11.5.3.2). Emil’s first experience with teaching function definition early on
withstood the impact of real-world classroom use, despite the warnings of a university
professor (Section 11.9.3.3).

Charles confirms that the minimalism of the PyTamaro library supports a teaching
approach where functions are defined early on to create common functions to draw
certain graphics. He notes, however, that students need to be constantly reminded of
the opportunity to define functions: they do not internalize this automatically (Sec-
tion 11.7.4.3). This is a commendable but challenging goal, as recognizing when it is
worth defining a clear abstraction is a nontrivial endeavor even for experienced pro-
grammers.

The need for guidance is also emphasized by Dorothy: students can get acquainted
with defining functions, but without supervision, they still tend to write large functions

247 11.10 We synthesized findings across cases

without thinking about which parameters are appropriate (Section 11.8.4.1).

In summary, despite some existing challenges, the reports from the teachers do not
suggest that defining functions is a topic that should be postponed. Their students,
mostly 9th graders, appear capable of using this powerful concept.

11.10.3.2 Students do not deem PyTamaro too restrictive for their creativity

Programming courses often include a final project in which students have more freedom
than in the prescribed exercises during the course. This project is often a moment in
which students can exercise agency [96].

When programming graphics, the final project may consist of a graphic chosen by
the student. However, PyTamaro’s deliberate limitations can make it hard to program
arbitrary graphics. Still, in three of the analyzed cases, teachers had students work on
a project with satisfaction.

Ada feels that her students have enough freedom to be creative in their final projects,
emphasizing a sense of empowerment that comes from being able to write code fully
on their own for the first time (Section 11.5.4.3).

Barbara and a colleague of hers, in this first offering, only allowed students to
pick a subset of the activities already available on the PyTamaro Web platform (Sec-
tion 11.6.4.2). They plan to give students more freedom to choose in a revised version
of their course, but were not dissatisfied with the first iteration.

Dorothy also has her students work on a project (Section 11.8.4.2). She scaffolded
the process to nudge her students towards parameterizing their code. She reports that
students were overall enthusiastic, with some voluntarily putting in additional work.
To draw some graphics, she taught some students how to use transparent rectangles
(effectively reintroducing a local coordinate system, see Section 5.10.2).

In the remaining two cases, projects could not be done within the first year, but
there were no specific complaints caused by PyTamaro’s constraints.

Emil developed some activities for faster students that are inspired by biology, but
reports not having yet found the time for students to work on an independent project
(Section 11.9.3.5).

Charles has only a limited time during the first year of his informatics course and is
not doing a project with PyTamaro. However, he still reports that PyTamaro’s approach
encourages students to experiment, more than they did when using turtle graphics in
his previous experience. The activities offered on the web platform also help to inspire
students (Section 11.7.4.1).

248 11.10 We synthesized findings across cases

Part V

Epilogue

249

Chapter 12

Here Is a Conclusive Look at This Thesis

This dissertation presented and investigated the PyTamaro approach from multiple an-
gles, to substantiate the claim that the graphics domain is a suitable vehicle to teach
programming in an engaging way, paying special attention to abstraction and decom-
position.

12.1 The PyTamaro approach has potential, but there are
challenges

To achieve this goal, in Part II we reviewed the challenge of teaching introductory
programming (Chapter 2), motivated the need for an engaging approach, and high-
lighted abstraction and problem decomposition as fundamental programming skills.
In Chapters 3 and 4 we reviewed existing libraries used in introductory programming
and described pitfalls that hinder teaching abstraction and decomposition or otherwise
require the use of complex language features to write even the simplest programs.

In Part III, we presented the PyTamaro approach which includes a Python library
(Chapter 5), a tangible notional machine to introduce programming unplugged (Chap-
ter 6), and a web platform (Chapter 7) with support for dedicated features such as the
Toolbox of Functions (Chapter 8) and a custom documentation system (Chapter 9)
that leverage the strengths of the approach to assist teaching programming with PyTa-
maro. We grounded our arguments in programming language theory and the existing
computing education research literature.

In Part IV, we presented two empirical investigations of PyTamaro.

Chapter 10 described a randomized controlled experiment in which we compared
PyTamaro with turtle graphics, one of the most popular approaches to teaching intro-
ductory programming using graphics. Student engagement was high for both groups of

251

252 12.2 Our empirical investigations have important limitations

learners. However, despite carefully designed mini-lessons, we could not demonstrate
better transfer for the PyTamaro group to questions outside the graphics domain. Both
groups performed well on simple program writing and modifying tasks. The PyTamaro
group traced a PyTamaro program much better than a “comparable” but not identical
turtle program.

Chapter 11 presented a multiple-case study analyzing five high school teachers in
Swiss high schools who adopted PyTamaro to teach programming in the now manda-
tory informatics course. Teachers embraced the PyTamaro approach, using graphics
as a domain to introduce most programming concepts and not just as a playful af-
terthought. They emphasize early on the importance of defining functions as a means
of abstraction and exploit the idea of a Toolbox of Functions, both on the PyTamaro
Web platform and offline. Despite the minimalism of the library, teachers report that
their students had ample room for creativity in projects that used PyTamaro.

However, the case study also revealed a number of challenges. Mostly due to lim-
ited classroom time, teaching materials only discuss the idea of decomposition within
the domain of graphics. Moreover, while we provide some exemplar activities with Py-
Tamaro, high school teachers who wish to adopt the approach have to create their own
curricula. This requires significant effort from teachers, who admit that it was only
feasible to create new materials thanks to the dedicated time available in the context
of a final project of their training program. Finally, all teachers are introducing loops
to repeat computation, which requires them to explain mutable variables. Reconciling
this concept, after discussing mostly immutable variables or constants with PyTamaro,
remains a challenge and not all materials explain this transition adequately.

12.2 Our empirical investigations have important limita-
tions

As pointed out in the respective chapters, our empirical investigations are subject to
important limitations and suffer from a number of biases.

Most notably, we are both the authors of the approach and the investigators of its
effectiveness. A positivist philosophy of science would perhaps reject altogether the
case study and appreciate the controlled experiment. However, as we discussed in
Section 10.3.4.1 and even empirically demonstrated in our previous research [50], an
educational researcher makes a multitude of decisions even when designing an appar-
ently objective experiment.

This thesis subscribes to pragmatism as a philosophy of science (Section 1.7) and
advocates transparency as the ultimate way for the research community to judge our
results.

253 12.3 Thanks to its flexibility, the approach is used in different contexts

12.3 Thanks to its flexibility, the approach is used in dif-
ferent contexts

Unlike many other research projects that never go beyond a prototypical phase, the
PyTamaro approach is actively being used in multiple contexts. We are painfully aware
that adoption does not guarantee pedagogical effectiveness, and that popularity is a
bad proxy to determine what works, but the use of PyTamaro at different educational
levels and by many different teachers is an encouraging indicator that PyTamaro is seen
by external people as a suitable approach.

The main “deployment” of PyTamaro is currently in Swiss high schools, spanning
the three main linguistic regions of the country. Five high school teachers were part of
the case study, but other teachers are also using PyTamaro with materials that depend
on their particular contexts and goals.

The PyTamaro approach is also implemented in a Java library that is used in a first-
year programming course at the home university of the author of this dissertation. It
is used in a textbook of sorts that uses graphics to bridge from Racket to Java [229],
before moving on to programming with objects and mutation'.

Lastly, PyTamaro is also used in an elective course on programming at a middle
school in Tessin. We briefly reviewed this curriculum, which we co-designed with the
responsible teacher, in Section 6.7. Notably, the curriculum relies heavily on unplugged
activities with TamaroCards.

Untrigued? https://luce.si.usi.ch/composition-in-java/.

https://luce.si.usi.ch/composition-in-java/

254 12.3 Thanks to its flexibility, the approach is used in different contexts

Chapter 13

What Is the Future of PyTamaro?

Whether or not the previous chapters were convincing enough that PyTamaro has po-
tential, this final one suggests some possible future directions for the approach. Some
directions allude to new software tools to be developed or extended, others call for
more extensive empirical investigations, others point instead to open problems in ped-

agogy.

13.1 More empirical studies can be conducted

Within the time frame of this research project, we could only evaluate empirically some
specific aspects of the extensive PyTamaro approach. Empirical studies in education re-
search have important differences from other studies that are more common in other
fields of computer science. Once a software system has been developed, it is often
straightforward to measure its performance using some metric and compare it to a
benchmark. But when the system is intended to be used in education, the ultimate
question is whether it is effective with students (i.e., does it bring learning gains?).
When humans enter the loop, studies suddenly become “expensive”. One has to find
the right participants and convince them to take part in the study. If the study re-
quires participants to be novice programmers who do not know a specific topic, those
novices will undergo a learning experience and will no longer be able to serve as naive
participants.

This dissertation described two main empirical investigations. In the study pre-
sented in Chapter 10, beginner students experienced a short teaching intervention
with PyTamaro in a highly controlled setting. Chapter 11, instead, focused primar-
ily on teachers, whose teaching materials ultimately impact students.

There are many more empirical studies one could design and conduct. Each aspect
of the PyTamaro approach could be investigated separately. The Toolbox of Functions,

255

256 13.2 The PyTamaro approach should still grow

the Judicious documentation system, and the unplugged approach with TamaroCards
were all grounded in programming language theory and the literature on teaching
introductory programming. However, these are only prerequisites and not proofs that
these ideas will show their benefits in practice. Empirical evaluations with learners
should be conducted to put our claims to the test.

The PyTamaro Web platform is currently collecting a large number of real-world
programs written by students using PyTamaro. Analyzing that data could also pro-
vide a complementary, quantitative perspective on how key aspects of the PyTamaro
approach, like abstraction and decomposition, manifest in student code.

Ultimately, an all-encompassing evaluation would require an extended version of
the short controlled experiment presented in Chapter 10. It would need moving from
the highly controlled but artificial conditions of a laboratory experiment to the messy
reality of classrooms. This transition would introduce numerous confounding factors,
but evidence from actual learners would provide the strongest signal to demonstrate
the effectiveness of the approach.

13.2 The PyTamaro approach should still grow

The PyTamaro approach covers a meaningful part of introductory programming, but
some educators may rightfully object to the lack of certain topics. This section briefly
describes some next steps to extend the approach.

13.2.1 Learners should eventually write interactive programs

The “Even or odd” program, despite its limitations, has an appealing quality: it is an
interactive program. Students can imagine a “user” entering a number of their choice
and the program reacting to that number.

This style of interleaving I/0 and the logic of the program is problematic, making it
harder to design clean, independent functions. PyTamaro materials do not encourage
it, and the web platform currently does not support input operations. Most PyTamaro
programs are thus batch programs, and their “input” is provided only at the beginning
(e.g., configuring constants or function arguments).

Better ways to design interactive programs exist. These notably include games,
which can be a source of motivation for students [236]. Felleisen et al. [81] describe a
programming architecture in which students provide functions that evolve the model
(e.g., depending on keyboard or mouse events) and render the model into a graphic.
This can be seen as a “functional”, educational variation of the more elaborate Model-
View-Controller architecture [152].

257 13.2 The PyTamaro approach should still grow

The PyTamaro library could be extended, or accompanied by a separate library,
to enable students to create interactions. In fact, the JTamaro library', which adopts
the same core as PyTamaro, includes additional features to create interactive Java pro-
grams. However, certain kinds of interactions, such as identifying which sub-graphic
a user has clicked on, are challenging to express. How to support those effectively, in
a clean but pedagogically viable style, is still an open research question. Yorgey [285]
illustrates one step towards this direction, avoiding the need for students to fiddle with
coordinates.

13.2.2 PyTamaro should offer more support for testing

Testing is not only central in software engineering, but ought to play an important
role in introductory programming as well [282]. Tests are one way to increase our
confidence in building correct programs.

When saving a function to the Toolbox in PyTamaro Web (Section 8.3.2), learners
are asked to provide an example call of their function and execute the code to manually
inspect that it produces the intended graphic. However, the PyTamaro library does
not offer much support to automatically verify that the output is correct. The library
currently offers only two functions to determine the width and the height of a graphic,
which can be used to express very basic assertions.

We have explored different strategies for testing the equality of graphics. The prob-
lem looks simple, but providing pedagogically reasonable solutions is rather challeng-
ing. Barland et al. [18] discuss at length how equality on graphics should be defined
and implemented. Equality between two graphics could be defined strictly as two
graphics being constructed in the same way (i.e., identical scene trees) or when they
are rendered with the same pixels.

Barland et al. [18] argue for the latter. But even if equality is defined on the graph-
ics as rendered, it would be advantageous to offer students more feedback on where the
differences are beyond saying that “some pixels at these coordinates differ”. Achieving
that properly is still an open research problem.

13.2.3 A graphical REPL would emphasize expressions

A Read-Eval-Print-Loop (REPL) enables students to focus on expressions at the very
beginning of their programming journey. With a Python REPL, a learner can type the
expression 2 ** 8 and see 256 as the result of the evaluation. There is no need to
create a program and learn about the print function just to see a simple result.

https://github.com/LuCEresearchlab/jtamaro

https://github.com/LuCEresearchlab/jtamaro

258 13.2 The PyTamaro approach should still grow

Unfortunately, nearly all REPLs are limited to displaying textual output. Two no-
table exceptions are the REPL within the DrRacket IDE [88] and the REPL offered by
the Pyret web environment [256]. Both are capable of displaying graphical values,
enabling students to begin working with graphics from day one, as they would with
numbers or strings.

The PyTamaro Web platform currently only offers a “Rapid Playground”: a ded-
icated ephemeral environment to experiment with PyTamaro programs. Offering a
REPL would provide an even smoother introduction to programming, benefiting cur-
ricula that focus on expressions. The translation of a TamaroCards expression into
Python could be evaluated without needing an explicit call to show_graphic.

13.2.4 Learners will transition beyond introductory programming in
Python

Given that an “official” PyTamaro curriculum does not exist, it is hard to give a definitive
answer to the question of which programming concepts are covered by the PyTamaro
approach. The case study described in Chapter 11 showed how different teachers cov-
ered different ground, depending on the available time and the goals of their specific
context.

Escaping the question altogether would be unwise, though. Learners will eventu-
ally transition to using more complex programming constructs and possibly entirely
new languages. Prior research has investigated how learners transfer from one lan-
guage to another [261]. A hypothesis that finds at least partial confirmation in em-
pirical results is that transfer improves when the languages share large parts of the
underlying semantics [168].

The transition does not necessarily have to be to a different language, however, es-
pecially when modern programming languages support many “paradigms” or “styles”
of programming. Adding language features such as mutable objects demands more
elaborate conceptual models for evaluating programs. This transition needs to be han-
dled with care (see, e.g., [229] and [3, Ch. 3]). Supporting this transition after students
have learned programming with PyTamaro is an exciting future direction.

Part VI

Appendices

259

Appendix A

Appendix to the Randomized Controlled
Experiment

A.1 Pre-Survey

Participants answered a pre-survey with the following questions:

* On demographics:

— How old are you? [numeric]
— What is your gender? [male; female; non-binary; other; prefer not to an-
swer]

* On prior experience:

— How many lines of code have you written before starting the course, across all
languages except HTML and CSS? [none; fewer than 50; fewer than 500;
fewer than 5000; more]

— Which rounds of exercises of the course have you completed? [subset of #1,
#2, #3]

— Have you ever written a program that draws graphics before? [yes; no; not
sure]

* On the attitude towards programming (answers on a seven-point Likert scale):

— It is useful for me to know how to program. [seven-point Likert from “not at
all true” to “completely true”]
— Programming is boring. [seven-point Likert]

— Programming is fun. [seven-point Likert]

261

262 A.2 Teaching Intervention

A.2 Teaching Intervention

This Section contains the exact text of the teaching intervention used in the study. The
intervention was divided into four mini-lessons, which correspond to the four subsec-
tions below. Each lesson starts with a common part that was shown to both the PyTa-
maro and Turtle groups. The lesson then “splits in two”: participants in the PyTamaro
group worked through the part marked as “PyTamaro-Only”, whereas participants in
the Turtle group worked through the part marked as “Turtle-Only”. A short recap con-
cludes each lesson and is common to both groups.

During the intervention, the Python code were shown in a web-based environment
that allowed participants to run the code and see the output.

A.2.1 Mini-Lesson 1 (of 4)

All the programs you have written so far in the CS1 course deal with text: perhaps they
read some input from the user as a sequence of characters (that is, a string), they do
some processing and calculations, and call the function print to spit out an answer
that is again textual.

Over the course of the next hour, you will learn how to write programs that go
beyond that and can create graphics. If that sounds scary, fear not!

Libraries It is much quicker to reuse program code that someone has already written,
instead of starting from scratch. This is why programmers constantly use so-called
libraries of reusable program parts to accomplish various things.

You can think of a library simply as a collection of names. Some of those names
refer to functions that the library provides for you to use: for instance, Python’s math
library offers a function named sqrt which computes the square root of a number.
Other names might just refer to plain values: again as an example, Python’s math
library contains the name pi for the mathematical constant 7, and thus pi equals
approximately 3.1415.

The tiny Python program below prints an approximate value of pi, which comes
from the math library. Note that you can choose to run the program — try it!

from math import pi
print (pi)

The first line of the program above “imports” the name pi so that you can use it in
your program. While the import is a necessary step, you will not see it again in all the
programs featured in the rest of these less material. You do not need to worry about
that: we add all the necessary imports automatically for you behind the scenes.

263 A.2 Teaching Intervention

There are many libraries; we’ll use one of them When they need to perform a task,
programmers can decide to use one of the many available libraries. Drawing graphics
is no exception: there are many available libraries to draw onscreen, and they embrace
different approaches.

This study explores two different libraries to draw graphics in Python. You have
been randomly assigned to one of them, which you are going to use in this session.
After the study is over, however, you are also welcome to look at the materials for the
other library, if you are interested.

PyTamaro-Only Part

Let’s Draw a Rectangle Let’s dive into it and see how to use a library named PyTa-
maro to draw graphics. We start very humbly, writing a program to create a rectangle
and show it on the screen. Conveniently, the PyTamaro library offers you a function
named rectangle to create rectangles. The library also has names such as green for
basic colors.

How do you call the rectangle function? Here is an illustration of the basic idea:

1 rectangle |

Figure A.1. Example call of rectangle

rectangle takes in three parameters, which are represented in the above illustra-
tion by the three incoming arrow-shaped “holes”. The first two parameters determine
the width and the height of the rectangle; the third one determines the color.

We can use numbers such as 200 and 100 for the first and the second parameter, to
indicate the width and the height, and a color such as green for the third parameter.

How can we use this function in a Python program? Let’s store its return value,
our rectangle (represented in the image near the outgoing arrow), in a variable named
football field. (There’s an example of this below.)

And then, just like one can pass any string such as "Hello world" to the func-
tion print to display a text on the screen, let’s pass a graphic to a function named
show_graphic to display it onscreen.

Try it! In the code below, the show_graphic function call contains three dots
(...). Edit the program: replace the dots with the name of the variable where we
stored the rectangle. Then run the program.

264 A.2 Teaching Intervention

football_field = rectangle(200, 100, green)
show_graphic(...)

Have you managed to see your first graphic? Congratulations!

Let’s Rotate Things Imagine now that you are sitting right at a corner of a stadium:
the football field would not look to you “horizontal”, but rotated by some angle. We can
try to modify our program to draw something like that. The PyTamaro library offers
you a function named rotate that takes two parameters: an angle in degrees and a
graphic. The function returns a graphic rotated counterclockwise by that angle. For
example:

rotate @

Figure A.2. Example call of rotate

In the next program below, complete the assignment in the second line by replacing
the dots with a call to the function rotate. For rotate’s first parameter, write 45 (i.e.,
45 degrees); for the second, write football field. Do not forget to separate the
two parameters with a comma.

football field = rectangle(200, 100, green)
rotated field = ...
show_graphic(rotated_field)

Do you see a rotated field? Awesome!

Perhaps you are wondering if we really must have two variables in the program
above. The answer is: no. We can rewrite the solution to combine the function calls
to rectangle and rotate. In terms of the illustrations above, we are plugging the
outgoing arrow of rectangle straight into the second incoming “hole” of rotate.

Take another look at the program just above. We need to plug the call to
rectangle into the place reserved for the second parameter when we are call-
ing the function rotate. Do that now in the code below: copy the expression
rectangle(200, 100, green) (the entire expression, including the closing)) and
paste it below, replacing the three dots

rotated field = rotate(45, ...)
show_graphic(rotated_field)

265 A.2 Teaching Intervention

Turtle-Only Part

Let’s Draw a Rectangle Let’s dive into it and see how to use a library named turtle to

draw graphics. We start very humbly, writing a program to create a line to be shown
on screen.

The turtle library is based on the following metaphor.

Imagine you are controlling a “robotic turtle” that can move on a canvas carrying a
colored pen. You give commands to the turtle. When the turtle moves, it leaves a trace
on the canvas, ultimately producing a drawing.

One of the commands understood by the turtle is forward. The function forward
takes in one number as a parameter. Calling the function causes the turtle to move
forward by the given amount of steps.

Note that forward moves the turtle in the direction it is currently facing. The turtle
starts facing east (that is, towards the right of your screen). Here is an animation of
the turtle moving forward with 100 steps:

Figure A.3. Animation forward [last frame — only the last frame of animations is re-
produced in this article, but the full animation was visibile to the participants during
the study]

We can also change the color of the pen carried by the turtle, to draw colored
lines such as in the example above. The default pen color is black, but we can use the
function pencolor to use a differently colored pen.

The pencolor function takes in one single parameter, a string containing the name
of the desired color for the pen.

To recap, you can draw a colored line by calling pencolor with a string param-
eter such as "green" for the name of the color, and further calling forward with a
numerical parameter such as 100 for how much the turtle should move forward.

Try it by yourself! Replace the three dots . . . inside the call to pencolor with the
appropriate string to draw a green line.

pencolor(...)
forward (100)

Have you managed to see your first graphic? Congratulations!

266 A.2 Teaching Intervention

i

Figure A.4. Animation forward-left [last frame]

Let’s Rotate We cannot get very far just by commanding the turtle to move forward.
Luckily, there are functions that rotate the turtle — or, in other words, change the
direction that the turtle faces in. Two such functions are named left and right. For
example, the 1left function offered by the library has one single parameter: an angle
in degrees that indicates how much the turtle should turn left.

We can draw a “mirrored” letter L (something like I) by first moving forward as
before (with the turtle moving towards the right edge of the screen), then turning the
turtle left by 90 degrees, and finally moving forward again.

Here is an animation that shows the plan for our turtle:

In the third line of the following program, replace the dots with a call to the function
left as described above.

pencolor("green")
forward(100)

forward (200)

Do you see something that resembles a I? Awesome!

Perhaps you are wondering if we cannot draw a proper letter L. The answer is: we
can. To do so, we’ll make use of the backward function. The function behaves exactly
like forward but moves the turtle backward (relative to the direction it is facing).

Here is the plan to draw the letter L. As always, the turtle starts facing east. We
move forward by a certain amount, and then we move backward by the same amount.
Then, as before, we turn left 90 degrees and move forward to complete the letter.

Now, in the code below, replace the three dots with backward (100) to complete
the plan above.

pencolor("green")
forward(100)

left (90)
forward(200)

267 A.2 Teaching Intervention

Common Part (PyTamaro and Turtle)

So Far, So Good! If everything worked, give yourself a pat on the back! In this lesson,
you learned what a programming library is and how to use one to draw a very simple
graphic. On to the next adventure!

A.2.2 Mini-Lesson 2 (of 4)

You now know how to draw an extremely basic shape. In this lesson, we will step up the
game a bit and try to draw a house. The house is made up of a ground floor, represented
by a square, on top of which sits a roof, represented by an equilateral triangle.

PyTamaro-Only Part

Let’s Draw the Ground Floor You can use the squarelzl function to create the ground
floor. It takes two parameters, the side length and the color, and returns a graphic of a
square.

In the program below, replace the dots on the first line. The line should assign
value to the variable ground_floor: the should variable holds the return value of the
square function, when that function is called with 100 as the side length and yellow
as the color.

ground_floor = ...
show_graphic(ground_floor)

(The square function works by creating a rectangle of the specified color in which
width and height are the same. In fact, it internally makes use of the rectangle
function seen in the previous lesson.)

Let’s Draw the Roof We now need to figure out how to create the roof. Luckily,
the PyTamaro library offers a function named triangle. It takes four parameters.
The first two determine the lengths of two of the triangle’s sides; the third parameter
determines the angle between those sides. The last parameter, as usual, describes the
color.

Let’s create a red equilateral triangle with a side length of 100. All of an equilateral
triangle’s internal angles measure 60 degrees. Therefore, we can call the triangle
function passing in the values 100, 100, 60, and red. Visually:

268 A.2 Teaching Intervention

/
triangle

. A

d

Figure A.5. Example call of triangle

Replace the dots in the code below with the appropriate function call.

roof = ...
show_graphic(roof)

Great! Now that we have the two individual graphics, we need a way to combine
them together as we intend.

Let’s Put the Pieces Together PyTamaro caters to our needs: it offers a function above
to place two graphics one above the other. The function above places the graphic
received as the first parameter above the graphic specified by the second parameter. It
returns a new, composed graphic.

Here is how we intend to use it:

above

Figure A.6. Example call of the above function

Complete the code below by replacing the dots in the third line with a call to the
function above, passing in the two graphics that are stored in the ground_floor and
the roof variables.

ground_floor = square(100, yellow)
roof = triangle(100, 100, 60, red)
house = ...

show_graphic (house)

Once you see the house, you can also experiment and exchange the two parameters
in the call to above. Run the program again and observe the difference!

269 A.2 Teaching Intervention

Turtle-Only Part

Let’s Draw the Ground Floor You can use the function square to draw the ground
floor. It takes just one parameter, the side length.

It is useful to understand just how this square function works. It repeats this
combination of commands four times: 1. it moves the turtle forward by the given side
length, and 2. then it rotates the turtle 90 degrees to the right.

Remember that at the beginning of a program the turtle starts by facing east (that
is, towards the right of the screen). Assuming that as a starting point, this is what
happens when the function square is called: 1. The turtle moves forward drawing the
top side of the square, and then it turns right. At this point, the turtle is facing south.
2. The turtle moves forward drawing the right side of the square, and then it turns
right. At this point, the turtle is facing west (that is, towards the left of the screen).
3. The turtle moves forward drawing the bottom side of the square, and then it turns
right. At this point, the turtle is facing north. 4. The turtle moves forward drawing the
left side of the square, and then it turns right.

After all the steps, the turtle has drawn a square. It is again facing in the same direc-
tion as before the execution of the square function. The animation below exemplifies
this process.

Figure A.7. Animation, drawing a square with turtle [last frame]

Now that you have an idea of how the square function works, replace the dots
with a call to it, using 100 as a value for the first and only parameter.

pencolor("yellow")

Let’s Add the Roof We now need to figure out how to create the roof. For that, we
can use a function named triangle, which is similar to square.

triangle commands the turtle to move forward and turn right 120 degrees three
times. In practice, this means that the function draws the three sides of a triangle
one after the other. The animation below shows what happens when the triangle

270 A.2 Teaching Intervention

function is called with a side length of 100. This animation, too, assumes that the turtle
faces east just before calling the function.

\V

Figure A.8. Animation, drawing a triangle with turtle [last frame]

In the code below, replace the dots with a call to triangle, passing in the value 100
for the side length. Observe that before that command we have already added a call
to pencolor, so that the roof is drawn in red.

pencolor("yellow")
square (100)
pencolor("red")

Whoops! You might have seen a drawing that was not what we intended! Don’t
worry: there is a simple explanation. When we call triangle, the first thing that
happens is that the turtle moves forward, in order to draw the first side of the triangle.
But this happens after the call to square, with the turtle (again) facing east; calling
triangle makes it move forward — east — and then turn 120 degrees to the right,
which is not what we want.

We need to rotate the turtle before calling the triangle function, so that the turtle
well positioned to start drawing the roof simply by moving forward.

We know how to do that: we can use the 1left function to turn the turtle left by
60 degrees (the measure of an equilateral triangle’s internal angle) just before drawing
the triangle.

Replace the dots in the code below with the appropriate call to 1eft.

pencolor("yellow")
square (100)
pencolor("red")

triangle(100)

271 A.2 Teaching Intervention

Common Part (PyTamaro and Turtle)

Wow! That took a while, but you can now feel proud: you wrote a program to draw
a house!

A.2.3 Mini-Lesson 3 (of 4)

Our single house feels lonely: it is time to give it company.

Two Houses Let’s draw a duplex house, which simply means two single houses next

to each other.
PyTamaro-Only Part

The PyTamaro library offers a convenient beside function that works pretty much
like the above function you have already used.

It takes two graphics as parameters and returns a new graphic by placing one spec-
ified as the first parameter on the left, and the one specified as the second parameter
on the right.

Complete the code below by replacing the dots with a call to beside. As you call
beside, you can use the variable house twice, once for each parameter (since we’re
placing two identical houses side by side).

ground_floor = square(100, yellow)
roof = triangle(100, 100, 60, red)
house = above(roof, ground_floor)

two_houses = ...
show_graphic(two_houses)

Got two houses? Great! However, some privacy is always welcome.

Privacy, Please! Could we add a wall in between the houses? A narrow, black rect-
angle will do the job.

But how? We’d like to place three graphics next to each other: a house, a wall, and
another house. But what we have is a two-parameter function beside that places two
graphics next to each other.

Well, we can call our function twice: the first call can combine the left house with
the wall, while the second one can combine the previous result and the right house.

Implement this idea in the code below, replacing the dots with the appropriate calls
to beside:

272 A.2 Teaching Intervention

ground_floor = square(100, yellow)
roof = triangle(100, 100, 60, red)
house = above(roof, ground floor)

wall = rectangle(15, 187, black)

left house with wall
two_houses_with_wall

show_graphic(two_houses_with wall)

An Alternative Solution There is a different but equally valid solution that perhaps
already occurred to you.

There’s no rule saying that the first step must involve the left house and the wall.
We could first combine the wall and the right house so that they are next to each other,
and then combine the left wall with the previous result!

Try to implement this variant and verify that it actually produces the same drawing.

ground_floor = square(100, yellow)

roof = triangle(100, 100, 60, red)
house = above(roof, ground floor)

wall = rectangle(15, 187, black)

wall _and_right_house
two_houses _with wall

show_graphic(two_houses_with_wall)

Turtle-Only Part

We can accomplish this with a rather simple idea. We have to: 1. Draw the first
house. The turtle ends up at the top-left corner of the square. It is not facing east,
however, because we rotated it 60 degrees left before calling triangle. 2. Re-position
the turtle so that it will be ready to execute again the same commands as the first step.
For this we need to: (a) compensate for the left turn made before calling triangle by
turning right and (b) then move the turtle forward. 3. Execute the same commands as
the first step to draw the second house.

273 A.2 Teaching Intervention

Complete the code below with two appropriate lines that replace the dots with: 1.
a call to right with 60 degrees as a parameter, to undo the left turn; and 2. a call to
forward to move the turtle by the same width as one house, that is 100 steps.

pencolor("yellow")
square (100)
pencolor("red")
left (60)
triangle(100)

pencolor("yellow")
square (100)
pencolor("red")
left (60)
triangle(100)

Note something important, though! When you moved the turtle forward during
the second step, it is still carrying a red pen that draws. This turns out not to be a
problem in this specific program, since the turtle moves along a line that has already
been drawn in red. Going over it a second time does not do any harm. But be mindful
of this pitfall in general: otherwise, your drawing may have surprising and unwanted
lines.

So you got two houses? Great! However, some privacy is always welcome.

Privacy, Please! Could we add a thick wall between the houses? A black square will
do the job.

Modify the program below to add a wall, which requires replacing the dots with
these three steps:

1. Change the color of the pen to "black".
2. Draw a square of side 100.

3. Position the turtle appropriately so that it is ready to draw the second house.

Note that the third step is essential and that, in general, the order in which you
give commands to the turtle matters.

274 A.2 Teaching Intervention

pencolor("yellow")
square (100)
pencolor("red")
left (60)
triangle(100)
right (60)
forward(100)

pencolor("yellow")
square (100)
pencolor("red")
left (60)
triangle(100)

(Do not worry about the left border of the second house overwriting the black wall.)

Once you got the proper drawing, convince yourself that the order of the commands
matters. Suppose that the plan above had step 1 and step 2 swapped (which means
drawing the wall before changing the pen color). Modify the code above to reflect this
change. Observe the result: what happens to the drawing?

Common Part (PyTamaro and Turtle)

You have practiced drawing slightly bigger graphics. Let’s bring this one step for-
ward with the next lesson.

A.2.4 Mini-Lesson 4 (of 4)

Let’s build some bigger graphics!

In many pictures, there are repeated elements; a picture might have several houses,
for example. That does not mean we have to duplicate a lot of code! The computer is
excellent at repeating things for us.

In the CS1 course, you have already encountered one mechanism in Python to
repeat: the for loop. Before getting back to graphics, let’s review a simple example
that might help you to refresh your knowledge.

Recap: for Loops Suppose you want to write a simple program to compute the av-
erage of the five grades you obtained in the past semester. Each grade is asked to the
user using the function input.

275 A.2 Teaching Intervention

To compute the average, we need to divide the sum of all grades by the number of
grades. How do we keep track of the sum of all grades? We can use a variable, named
for example sum_grades. At any point during the execution of the program, the role
of that variable is to track the sum of the grades seen so far.

n_grades = 5

sum_grades = 0O
for i in range(n_grades):
grade = int(input())
sum_grades = sum_grades + grade

average = sum_grades / n_grades
print ("Average grade:", average)

The for loop repeats the instructions “contained” in it (the two indented lines)
n_grades times, which here means five times. In other words, the loop does five
iterations over the instructions; we’ll use this term below.

Before the first iteration, we do not have any information about the grades, yet. We
can conveniently initialize the variable sum_grades to 0.

Now consider the first iteration. For example, let’s say that the user first enters the
grade 4. Then, sum_grades will be assigned to the value O + 4, which is just 4.

Imagine that the user inputs the grade 3 at the second iteration of the loop. The
value of the variable sum_grades will be updated to 3 + 4, thatis 7.

This process goes on for all the specified number of iterations (n_grades, in the
example). At the end of the last iteration, the variable sum_grades has accumulated
the sum of all grades, exactly like we wanted. We can then easily compute and print
the average.

Back to Graphics! Can we use a for loop to draw a graphic containing a repeated
pattern? Sure we can!

Consider a simplified street that consists of a number of houses, all having the same
appearance as the one we have drawn so far. We are looking at a densely populated
neighborhood: there is no space between adjacent houses.

PyTamaro-Only Part

We can make good use of the for loop to repeat the same operation multiple times
and place many graphics next to each other.

276 A.2 Teaching Intervention

In the example presented at the beginning of this lesson, we used a variable
(sum_grades) to accumulate the grades summed at each iteration. We can do the
same and use a variable to accumulate the houses placed next to each other at each
iteration.

Just like for grades we added one new grade at each iteration, we will now add one
new house at each iteration to the ones “joined” so far.

Let’s give the name street to the variable used to accumulate the houses. Before
the loop, our street is going to be empty (of houses and indeed of anything). The first
iteration will update street so that it contains one house. The second iteration will
add one more house, so that street will contain two houses. The third iteration will
add one more house: street will then contain three houses, and so on.

Which initial value should we use for street, before the loop? Like O in the ex-
ample with the grades, we should use a value that works for the first iteration of the
loop. Here, we need a graphic that when placed beside our first house, just results in
that same single house.

PyTamaro has a function for this purpose: it is named empty_graphic. The func-
tion takes no parameters and returns an empty graphic. When combining an empty
graphic with any other graphic (using beside, for example), the result is just the other
graphic. Convenient, and a bit like zero in math!

Look closely at the code below. The first three lines create a house as we have
always done so far. A variable n_houses contains the number of houses we want to
have in our street. We initialize street to an empty graphic, the result of calling the
parameterless function empty_graphic.

Then comes our for loop.

At each iteration, we need to assign to street a combined graphic. That graphic
is the result of placing any previous houses beside one more house; in other words, we
should place street’s earlier value beside a new house from the house variable.

Replace the dots below with a call to beside. As parameters, write the names of
the two variables suggested above.

After the loop, street is a graphic that contains five houses next to each other,
and is ready to be shown as usual with show_graphic.

ground_floor = square(100, yellow)
roof = triangle(100, 100, 60, red)
house = above(roof, ground_floor)

n_houses = b

street = empty_graphic()

277 A.2 Teaching Intervention

for i in range(n_houses):
street =

show_graphic(street)

Can you see a street with five houses? Lovely!

Turtle-Only Part

We can now make good use of the for loop we just reviewed to repeat the same
operation multiple times and place many graphics next to each other.

We need to draw a street of houses. Each iteration of the for loop will just draw one
house.

Let’s recall the plan we used in the previous lesson to draw just two houses: 1.
Draw the first house. 2. Re-position the turtle so that it will be ready to execute again
the same commands as the first step. 3. Draw the second house.

This implies that at the end of each iteration we need to prepare the ground so that
the next one can start properly. Concretely, it means that after drawing a house (step 1
in the plan), we always need to: (a) turn the turtle right by 60 degrees (to “undo” the
left turn made before drawing the triangle), and (b) move the turtle forward by 100
steps.

Complete the code below with the two appropriate commands so that after each
iteration, the turtle is positioned so that it’s ready to start drawing the ground floor of
the next house.

n_houses = 5

for i in range(n_houses):
pencolor ("yellow")
square (100)
pencolor("red")
left (60)
triangle(100)

Can you see a street with five houses? Lovely!

There is just one tiny inefficiency: we also reposition the turtle at the last iteration
of the loop, even though there is no house to draw further. You can safely ignore this,
given that we are not at all concerned with performance here.

278 A.3 Post-Survey

As a final point, notice how using a loop helped us to avoid duplicating code, which
is something that we did in the previous lesson, in which all the commands to draw
a house were written twice. Experienced programmers consider code duplication a
very bad thing. Think about what you would need to do if you had many houses in
a graphic and decided that their roofs should be rectangles instead. It would require
you to go through lots of lines and replace every occurrence of triangle with other
code. Besides being a boring manual process, you would risk forgetting to do some
replacements.

Common Part (PyTamaro and Turtle)

End of the Mini-Lessons You have now practiced for loops a bit more and learned
how they help also in programs that deal with graphics.

A.3 Post-Survey

Participants answered a post-survey with the following questions, all on a seven-point
Likert scale from 1 (“not at all true”) to 7 (“completely true”):

* I found the preceding lessons interesting.
* I feel that I learned about programming concepts from these lessons.

* I already knew beforehand how to do graphical programming similar to what
was taught in the lessons.

* Talready knew beforehand all the general programming content (variables, func-
tions, loops, etc.) that was covered in the lessons.

* Programming with graphics is fun.

* I like programming with graphics more than the text-based programming we
have done in CS1.

* I would like to learn more about programming with graphics.

A.4 Post-Test Multiple-Choice Questions

For each multiple-choice question, participants have been asked to choose the claim
they believe is most accurate. Questions featured an additional “I don’t know” option,
to be picked only in case the participant was very unsure.

279 A.4 Post-Test Multiple-Choice Questions

A.4.1 Question 1

“Cha Cha Cha” is the title of a song. This Python program plays with the song title and
prints “Cha” three times, each one on a separate line.

print("Cha")
print ("Cha")
print ("Cha")

Your friend says that it is possible to get the same output differently by introducing
a variable word:

word = "Cha"
print (word)
print (word)
print (word)

Is the program still working as before?

* Yes, because word is used only once in each instruction/line. An instruction like
print (word + word + word) is invalid and produces an error.

* Yes, because we can use the value stored in the variable as many times as we
want.

* No, only the first print works. To fix the second program, we would need to
add word = "Cha'" before the second and the third print as well.

* No, because the second program prints three times word.

A.4.2 Question 2

Python’s math library contains a function named sqrt. It takes one parameter, the
number to compute the square root of. Its return value is also a number, the square
root of the provided number.

This program first computes the square root of 16, and then the square root of the
result, which is finally printed:

root_of_sixteen = sqrt(16)
final root = sqrt(root_of sixteen)
print(final_root)

Your friend says that the same result can be obtained with a shorter program:

280

A.4 Post-Test Multiple-Choice Questions

print (sqrt(sqrt(16)))

Is the program still working as before?

Yes, because of the mathematical properties of the square root function. The
same transformation with a function half that divides a number by two would
not have worked.

Yes, because it first computes the square root of 16, then computes the square
root of the result, and eventually prints the final result.

No. sqrt(16) works, because we are passing a number, 16, to the function.
But in sqrt (sqrt (16)) we are passing sqrt (16), which is not a number but
a function call.

No, because sqrt is a function that takes one parameter, and the second pro-
gram attempts to give the first (outermost) sqrt call two parameters.

No, because we need a variable to store the result of sqrt before we can pass it
to another function call.

A.4.3 Question 3

Imagine that a Python library contains a function named subtract. It takes two num-
bers as parameters, and returns the result of subtracting the second number from the
first one.

result = subtract(10, 7)
print (result)

Does executing the program above print 3?

Yes, because calling subtract is one way to subtract a number from another.
Because we are free to choose the order of parameter values, we could have also
written result = subtract(7, 10) to get the same result.

Yes, because we are correctly passing the numbers 10 and 7 to the function
subtract.

No, because functions can only have one parameter. It is therefore impossible
for the library to offer a working subtract function with two parameters.

No, because that is not how you should pass multiple parameters when a function
requires more than one: the call should have been subtract (10) (7).

281 A.4 Post-Test Multiple-Choice Questions

A.4.4 Question 4

Imagine that a Python library contains a function named fake_random. It has zero
parameters, and always returns the number 42 as a fake random number.

print (fake_random())

Does executing the program above print 42?

* Yes, because fake _random() calls the function, which will return the number
42. The result is passed to print. Also, the empty parentheses () are necessary;
just print (fake_random) does not work.

* Yes, because fake random() «calls the function. Also, writing just
print(fake random) without the empty parentheses would have done the
same, given that the function returns a constant number.

* No, because the function fake_random cannot possibly exist as such, as func-
tions need to have at least one parameter.

* No, because the function fake random has zero parameters, and such a param-
eterless function cannot return a value.

* No, because we need a variable to store the result of fake _random before we
can pass it to print.

A.4.5 Question 5

Imagine you have a function named combine at your disposal. It takes two strings as
parameters and returns a combined string. For example, combine ("hel", "lo")
returns "hello".

The goal is to write a program that constructs the word restaurant from three
pieces, then prints out the result.

One of your friends comes up with the following program:

first _combination = combine("re", "stau")
word = combine(first_combination, "rant")

print (word)

Another friend suggests this other implementation:

282 A.4 Post-Test Multiple-Choice Questions

first combination = combine("stau", "rant")
word = combine("re", first combination)
print (word)

What can you say about these two programs?

. ey both work, even if the word is constructed in two alternative ways.
They both k, f th d tructed in t It t y.

¢ The first one works, but the second one does not, because "re" is added in the
second line after "staurant" has been created.

* The first one works, but the second one does not, because combine is not com-
mutative (that is, because exchanging the first parameter with the second makes
a difference).

* Neither one works, as a two-parameter function cannot be defined (so that it
works).

A.4.6 Question 6

You want to write a program that asks the user for five numbers, multiplies all of them
together, and prints the result. Your friend suggests this skeleton, but they are unsure
about what to write instead of the dots at the beginning.

for i in range(5):
number = int(input())
product = product * number
print (product)

What should the dots be replaced with?

* product = 0, because the variable product needs to be initialized to the neu-
tral number O before looping.

* product = 1, because 1 is the only number that multiplied with any other
number just results in the other number.

* We need to initialize product to some value, but it doesn’t matter which one,
because that value will in any case be replaced by the first number entered by
the user during the first iteration of the loop.

* There is no number that works as an initial value for product. Other changes
would need to be done to the program as well.

Appendix B

Appendix to the Case Study

B.1

Additional dedicated questions for Ada

When using the old materials with turtle graphics, what did both you and your
students understand about the magic line from gturtle import *?

On the last page of the first note there is a brief mention of “Decomposition with
turtle”. Did you actually do decomposition with turtle graphics?

How much were you relying on the debugger with TigerJython? Do you feel the
absence of something similar for PyTamaro?

Even before PyTamaro you felt the need of writing your own notes. Was it about
the lack of materials? The desire of personalization?

On page 7 in the third note, some snippets of code use methods. How do you
explain them to students? Do you or they use the documentation for them?

There is no appearance of TamaroCards in your materials. Do you use the cards?

Several activities introduce the definition of functions. Why is the need of ab-
straction with functions not motivated with the game of “similarities and differ-
ences”?

How are the activities on the web platform actually used in the classroom? Do
students work on them on their own?

The activity “Table of values” uses some functions that are more akin to proce-
dures. Do students notice this? Do they have problems in understanding them?

283

284

B.2 Additional dedicated questions for Barbara

B.2

Why did you decide to end nearly all your activities with the learning objectives
nicely divided into concepts, Python, and PyTamaro?

You show to students how to use the print function with variable-length ar-
guments at the very beginning. Are students confused by this accommodating
behavior?

When introducing functions, you establish a parallel between function definition
and function use (or call). Could you use the same parallel when discussing
variables (definition versus use)?

Is repetition first introduced without PyTamaro? Why?

Are you discussing the concept of variables versus constants, or are you only
using the former as a terminology?

Where did you learn about the “Variable as a Box” metaphor?

Where did you learn about the “EVA” principle (“Eingabe, Verarbeitung, Aus-
gabe”, “Input, Processing, Output”)?

Additional dedicated questions for Barbara

One slide compares “Python types” with “PyTamaro types”. Do you perceive
them as different?

How are you using the TamaroCards in your teaching? What is the experience
with your students?

Are you using Thonny as the primary IDE or the PyTamaro Web platform?

One of the grading criteria is “verschachtelungstiefe flach”, “flat/shallow nesting
depth”. Why did you include it among your grading criteria?

Do your students work in pairs, as suggested by one of your slides?

The Toolbox approach is shown both in Thonny and on the PyTamaro Web plat-
form. Do you think it is effective?

On Slide 158. Why are you using the “variable as a box” metaphor? Why do you
introduce it at that point?

285

B.3 Additional dedicated questions for Charles

B.3

B.4

Additional dedicated questions for Charles

In part 5, you are using a memory diagram. Why do you introduce it? Why do
you show it both for numbers and graphics?

In part 5, did you deliberately try to avoid using the range function at first? Part
6 uses range in an activity with list comprehension.

In part 5, an example uses tuples. Do you include tuples in the data structures
you teach?

What kind of exam questions do you ask to your students?

You are using the Toolbox idea, but not the dedicated support in the web plat-
form. How do students perceive the manual approach to the Toolbox (including
managing files)? Can they see the benefits?

How do students perceive the first unplugged activities with the TamaroCards?
When do you stop using the cards?
Do you also use the cards to define your own function?

What motivated the revision of your PyTamaro materials for this school year,
compared to the previous year?

Additional dedicated questions for Dorothy

On slide 141. Why did you choose names for the variables that are almost the
same as the name of the function?

You often use types for the variables. Do you always do that? What is the reaction
of the students?

Do you think that explicitly showing common errors at the beginning helps stu-
dents?

Are you using Python IDLE as an IDE, the PyTamaro Web platform, or both?

On an exercise that solves the compound interest example. Do students like this
example better? Do they see this kind of programming differently than with
PyTamaro? Can they apply what they already know?

286 B.5 Additional dedicated questions for Emil
* On the fifth question of the exam. Why did you choose to include a question
about “program quality”? Did most students get it right?
* Do you think that it is helpful to have the API in German?
* Is the first activity on PyTamaro Web happening before the unplugged introduc-
tion with the TamaroCards?
* When do you stop using the TamaroCards? Why?
* On an activity about “changeable variables” on PyTamaro Web. Do you expect
your students to use mutable variables also with PyTamaro?
* Do you not encourage nesting? Why? Do you believe it is hard to understand?
* In one of your activities you state: “Do not use short, long, double and char”.
Do your students know other programming languages?
* Why do you talk about “similarities and differences” only several activities after
introducing parametrization?
* Is the Toolbox explained as something specific to PyTamaro?
B.5 Additional dedicated questions for Emil

The second activity, after the introductory one, immediately discusses error mes-
sages. Why? Do you feel that it is effective?

In one activity, you describe an “interpretation” activity with TamaroCards. When
do you start using the cards? When do you stop?

How do your students react to the “Principle of nesting” activity?
How are students dealing with defining functions relatively early?

Why is Toolbox introduced immediately when introducing function definitions
for the first time?

Do you do any activity to target decomposition, modularization, or abstraction
outside the domain of graphics?

The for loop is introduced by printing the numbers in a list, and then immedi-
ately after by working with graphics. Does this close presentation help students
to recognize the parallel?

287 B.5 Additional dedicated questions for Emil

* Do you connect empty_graphic to the concept of a neutral element in mathe-
matics?

* Are some of your activities mixing _ as a placeholder for identifiers and . . . as
a placeholder for expressions?

* What kind of exercises do you plan to ask in an exam?

288 B.5 Additional dedicated questions for Emil

References

[1]

[2]

[3]

[4]

[5]

(6]

[7]

(8]

Hal Abelson, Nat Goodman, and Lee Rudolph. LOGO Manual. Tech. rep. AIM-
313 / LOGO Memo 7. MIT, Dec. 1974, p. 84. URL: https://dspace.mit.
edu/handle/1721.1/6226.

Harold Abelson and Andrea diSessa. Turtle Geometry: The Computer as a Medium
for Exploring Mathematics. The MIT Press, June 1981. ISBN: 978-0-262-36274-
0. DOLI: 10.7551/mitpress/6933.001.0001.

Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Com-
puter Programs. The MIT Press, July 1996. ISBN: 978-0-262-51087-5.

Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Com-
puter Programs: JavaScript Edition. Cambridge, MA, USA: MIT Press, May 2022.
ISBN: 978-0-262-36762-2.

Shaaron Ainsworth. “DeFT: A Conceptual Framework for Considering Learn-
ing with Multiple Representations”. In: Learning and Instruction 16 (2006),
pp. 183-198.

Efthimia Aivaloglou and Felienne Hermans. “How Kids Code and How We
Know: An Exploratory Study on the Scratch Repository”. In: Proceedings of
the 2016 ACM Conference on International Computing Education Research. Mel-
bourne VIC Australia: ACM, Aug. 2016, pp. 53-61. ISBN: 978-1-4503-4449-4.
DOI: 10.1145/2960310.2960325.

Reem A. Alamer, Wejdan A. Al-Doweesh, Hend S. Al-Khalifa, and Muna S. Al-
Razgan. “Programming Unplugged: Bridging CS Unplugged Activities Gap for
Learning Key Programming Concepts”. In: 2015 Fifth International Conference
on E-Learning (Econf). Oct. 2015, pp. 97-103. DOL: 10.1109/ECONF.2015.
27.

Jeffrey R. Albrecht and Stuart A. Karabenick. “Relevance for Learning and Mo-
tivation in Education”. In: The Journal of Experimental Education 86.1 (Jan.
2018), pp. 1-10. ISSN: 0022-0973, 1940-0683. DOI: 10.1080/00220973.
2017.1380593.

289

https://dspace.mit.edu/handle/1721.1/6226
https://dspace.mit.edu/handle/1721.1/6226
https://doi.org/10.7551/mitpress/6933.001.0001
https://doi.org/10.1145/2960310.2960325
https://doi.org/10.1109/ECONF.2015.27
https://doi.org/10.1109/ECONF.2015.27
https://doi.org/10.1080/00220973.2017.1380593
https://doi.org/10.1080/00220973.2017.1380593

290 REFERENCES

[9] Carl Alphonce and Phil Ventura. “Using Graphics to Support the Teaching of
Fundamental Object-Oriented Principles in CS1”. In: Companion of the 18th
Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications. Anaheim CA USA: ACM, Oct. 2003, pp. 156-161.
ISBN: 978-1-58113-751-4. DOL: 10.1145/949344 .949391.

[10] Amjad Altadmri and Neil C.C. Brown. “37 Million Compilations: Investigating
Novice Programming Mistakes in Large-Scale Student Data”. In: Proceedings of
the 46th ACM Technical Symposium on Computer Science Education. SIGCSE ’15.
New York, NY, USA: Association for Computing Machinery, Feb. 2015, pp. 522~
527. ISBN: 978-1-4503-2966-8. DOI: 10.1145/2676723.2677258.

[11] Boyd Anderson, Martin Henz, Kok-Lim Low, and Daryl Tan. “Shrinking JavaScript
for CS1”. In: Proceedings of the 2021 ACM SIGPLAN International Symposium
on SPLASH-E. Chicago IL USA: ACM, Oct. 2021, pp. 87-96. ISBN: 978-1-4503-
9089-7. DOI: 10.1145/3484272.3484970.

[12] Aivar Annamaa. “Introducing Thonny, a Python IDE for Learning Program-
ming”. In: Proceedings of the 15th Koli Calling Conference on Computing Educa-
tion Research - Koli Calling ’15. Koli, Finland: ACM Press, 2015, pp. 117-121.
ISBN: 978-1-4503-4020-5. DOI: 10.1145/2828959.2828969.

[13] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H.
Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. Van Wijngaarden,
and M. Woodger. “Report on the Algorithmic Language ALGOL 60”. In: Com-
munications of the ACM 3.5 (May 1960). Ed. by Peter Naur, pp. 299-311. ISSN:
0001-0782, 1557-7317. DOIL: 10.1145/367236.367262.

[14] John Backus. “The History of FORTRAN I, II, and III”. In: ACM SIGPLAN Notices
13.8 (Aug. 1978), pp. 165-180. ISSN: 0362-1340, 1558-1160. DOI: 10.1145/
960118.808380.

[15] Marini Abu Bakar, Muriati Mukhtar, and Fariza Khalid. “The Effect of Turtle
Graphics Approach on Students’ Motivation to Learn Programming: A Case
Study in a Malaysian University”. In: International Journal of Information and
Education Technology 10.4 (2020), pp. 290-297. ISSN: 20103689. DOI: 10.
18178/1jiet.2020.10.4.1378.

[16] Sebastian Baltes and Stephan Diehl. “Usage and Attribution of Stack Overflow
Code Snippets in GitHub Projects”. In: Empirical Software Engineering 24.3
(June 2019), pp. 1259-1295. ISSN: 1573-7616. DOIL: 10 . 1007 /s10664 -
018-9650-5.

https://doi.org/10.1145/949344.949391
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1145/3484272.3484970
https://doi.org/10.1145/2828959.2828969
https://doi.org/10.1145/367236.367262
https://doi.org/10.1145/960118.808380
https://doi.org/10.1145/960118.808380
https://doi.org/10.18178/ijiet.2020.10.4.1378
https://doi.org/10.18178/ijiet.2020.10.4.1378
https://doi.org/10.1007/s10664-018-9650-5
https://doi.org/10.1007/s10664-018-9650-5

291

REFERENCES

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Sebastian Baltes and Christoph Treude. “Code Duplication on Stack Overflow”.
In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: New Ideas and Emerging Results. ICSE-NIER '20. New York, NY,
USA: ACM, Sept. 2020, pp. 13-16. ISBN: 978-1-4503-7126-1. DOI: 10. 1145/
3377816.3381744.

Ian Barland, Robert Bruce Findler, and Matthew Flatt. The Design of a Func-
tional Image Library. 2010. URL: https://users.cs.northwestern.edu/
~robby/pubs/papers/sfp2010-bff.pdf (visited on 02/07/2025).

Piraye Bayman and Richard E. Mayer. “Using Conceptual Models to Teach BA-
SIC Computer Programming.” In: Journal of Educational Psychology 80.3 (Sept.
1988), pp. 291-298. ISSN: 1939-2176, 0022-0663. DOIL: 10. 1037 /0022~
0663.80.3.291.

Theresa Beaubouef and John Mason. “Why the High Attrition Rate for Com-
puter Science Students: Some Thoughts and Observations”. In: ACM SIGCSE
Bulletin 37.2 (June 2005), pp. 103-106. ISSN: 0097-8418. DOI: 10. 1145/
1083431.1083474.

Tim Bell and Jan Vahrenhold. “CS Unplugged—How Is It Used, and Does It
Work?” In: Adventures Between Lower Bounds and Higher Altitudes: Essays Ded-
icated to Juraj Hromkovi¢ on the Occasion of His 60th Birthday. Ed. by Hans-
Joachim Bockenhauer, Dennis Komm, and Walter Unger. Cham: Springer In-
ternational Publishing, 2018, pp. 497-521. ISBN: 978-3-319-98355-4. DOIL:
10.1007/978-3-319-98355-4_29.

Timothy C. Bell, Ian H. Witten, and Mike Fellows. “Computer Science Un-
plugged: Off-line Activities and Games for All Ages”. In: (1998). URL: https:
//classic.csunplugged.org/documents/books/english/unplugged-
book-v1.pdf (visited on 07/11/2025).

Mordechai Ben-Ari. “Constructivism in Computer Science Education”. In: Jour-
nal of Computers in Mathematics and Science Teaching 20.1 (2001), pp. 45-73.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. ‘A
Neural Probabilistic Language Model”. In: The Journal of Machine Learning Re-
search 3 (Mar. 2003), pp. 1137-1155. ISSN: 1532-4435.

Jens Bennedsen and Michael E. Caspersen. “Failure Rates in Introductory Pro-
gramming”. In: ACM SIGCSE Bulletin 39.2 (June 2007), pp. 32-36. ISSN: 0097-
8418.DOI: 10.1145/1272848.1272879.

https://doi.org/10.1145/3377816.3381744
https://doi.org/10.1145/3377816.3381744
https://users.cs.northwestern.edu/~robby/pubs/papers/sfp2010-bff.pdf
https://users.cs.northwestern.edu/~robby/pubs/papers/sfp2010-bff.pdf
https://doi.org/10.1037/0022-0663.80.3.291
https://doi.org/10.1037/0022-0663.80.3.291
https://doi.org/10.1145/1083431.1083474
https://doi.org/10.1145/1083431.1083474
https://doi.org/10.1007/978-3-319-98355-4_29
https://classic.csunplugged.org/documents/books/english/unplugged-book-v1.pdf
https://classic.csunplugged.org/documents/books/english/unplugged-book-v1.pdf
https://classic.csunplugged.org/documents/books/english/unplugged-book-v1.pdf
https://doi.org/10.1145/1272848.1272879

292 REFERENCES

[26] Joey Bevilacqua, Luca Chiodini, Igor Moreno Santos, and Matthias Hauswirth.
“Assessing the Understanding of Expressions: A Qualitative Study of Notional-
Machine-Based Exam Questions”. In: Proceedings of the 24th Koli Calling In-
ternational Conference on Computing Education Research. Vol. 1. New York,
NY, USA: Association for Computing Machinery, 2024, p. 1. DOI: 10.1145/
3699538.3699554.

[27] A.F. Blackwell. “First Steps in Programming: A Rationale for Attention Invest-
ment Models”. In: Proceedings IEEE 2002 Symposia on Human Centric Comput-
ing Languages and Environments. Sept. 2002, pp. 2-10. DOI: 10.1109/HCC.
2002.1046334.

[28] Bootstrap. Bootstrap :: Hour of Code. URL: https://www.bootstrapworld.
org/materials/fall2023/en-us/lessons/hoc-winter-parley/
index.html (visited on 04/16/2024).

[29] Maura Borrego, Stephanie Cutler, Michael Prince, Charles Henderson, and
Jeffrey E. Froyd. “Fidelity of Implementation of Research-Based Instructional
Strategies (RBIS) in Engineering Science Courses”. In: Journal of Engineering
Education 102.3 (2013), pp. 394-425. ISSN: 2168-9830. DOIL: 10.1002/ jee.
20020.

[30] Richard E. Boyatzis. Transforming Qualitative Information : Thematic Analysis
and Code Development. Thousand Oaks, CA : Sage Publications, 1998. ISBN:
978-0-7619-0960-6. URL: http://archive.org/details/transformingqual 0000boya.

[31] Karen Brennan and Mitchel Resnick. New Frameworks for Studying and Assess-
ing the Development of Computational Thinking. 2012. URL: http://scratched.
gse.harvard.edu/ct/files/AERA2012.pdf.

[32] Neil C. C. Brown, Amjad Altadmri, Sue Sentance, and Michael Kolling. “Black-
box, Five Years On: An Evaluation of a Large-scale Programming Data Col-
lection Project”. In: Proceedings of the 2018 ACM Conference on International
Computing Education Research. ICER "18. New York, NY, USA: Association for
Computing Machinery, Aug. 2018, pp. 196-204. ISBN: 978-1-4503-5628-2.
DOI: 10.1145/3230977.3230991.

[33] Neil C. C. Brown and Mark Guzdial. “Confidence vs Insight: Big and Rich Data
in Computing Education Research”. In: Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1. Portland OR USA: ACM, Mar.
2024, pp. 158-164. DOI: 10.1145/3626252.3630813.

https://doi.org/10.1145/3699538.3699554
https://doi.org/10.1145/3699538.3699554
https://doi.org/10.1109/HCC.2002.1046334
https://doi.org/10.1109/HCC.2002.1046334
https://www.bootstrapworld.org/materials/fall2023/en-us/lessons/hoc-winter-parley/index.html
https://www.bootstrapworld.org/materials/fall2023/en-us/lessons/hoc-winter-parley/index.html
https://www.bootstrapworld.org/materials/fall2023/en-us/lessons/hoc-winter-parley/index.html
https://doi.org/10.1002/jee.20020
https://doi.org/10.1002/jee.20020
http://archive.org/details/transformingqual0000boya
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
https://doi.org/10.1145/3230977.3230991
https://doi.org/10.1145/3626252.3630813

293

REFERENCES

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Neil C. C. Brown, Pierre Weill-Tessier, Maksymilian Sekula, Alexandra-Lucia
Costache, and Michael Kolling. “Novice Use of the Java Programming Lan-
guage”. In: ACM Transactions on Computing Education (July 2022). DOI: 10.
1145/3551393.

Neil Christopher Charles Brown, Michael Kolling, Davin McCall, and Ian Ut-
ting. “Blackbox: A Large Scale Repository of Novice Programmers’ Activity”.
In: Proceedings of the 45th ACM Technical Symposium on Computer Science Ed-
ucation. SIGCSE '14. New York, NY, USA: Association for Computing Machin-
ery, Mar. 2014, pp. 223-228. ISBN: 978-1-4503-2605-6. DOI: 10 . 1145/
2538862 .2538924.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. “Language Models Are Few-Shot Learners”.
In: Proceedings of the 34th International Conference on Neural Information Pro-
cessing Systems. NIPS ’20. Red Hook, NY, USA: Curran Associates Inc., Dec.
2020, pp. 1877-1901. ISBN: 978-1-7138-2954-6.

Joshua Burridge and Alan Fekete. “Teaching Programming for First-Year Data
Science”. In: Proceedings of the 27th ACM Conference on on Innovation and Tech-
nology in Computer Science Education Vol. 1. ITiCSE ’22. New York, NY, USA:
Association for Computing Machinery, July 2022, pp. 297-303. ISBN: 978-1-
4503-9201-3. DOI: 10.1145/3502718.3524740.

Donald Thomas Campbell and Julian Cecil Stanley. Experimental and Quasi-
Experimental Designs for Research. 2. print. Boston: Houghton Mifflin Comp,
1967. ISBN: 978-0-395-30787-8.

V. R. Cane and A. W. Heim. “The Effects of Repeated Retesting: III. Further
Experiments and General Conclusions”. In: Quarterly Journal of Experimental
Psychology 2.4 (Dec. 1950), pp. 182-197. ISSN: 0033-555X. DOI: 10.1080/
17470215008416596.

Michael E. Caspersen. “Informatics as a Fundamental Discipline in General
Education: The Danish Perspective”. In: Perspectives on Digital Humanism. Ed.
by Hannes Werthner, Erich Prem, Edward A. Lee, and Carlo Ghezzi. Cham:
Springer International Publishing, 2022, pp. 191-200. ISBN: 978-3-030-86144-
5.DOI: 10.1007/978-3-030-86144-5_26.

https://doi.org/10.1145/3551393
https://doi.org/10.1145/3551393
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/3502718.3524740
https://doi.org/10.1080/17470215008416596
https://doi.org/10.1080/17470215008416596
https://doi.org/10.1007/978-3-030-86144-5_26

294

REFERENCES

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Michael E. Caspersen and Jens Bennedsen. “Instructional Design of a Program-
ming Course: A Learning Theoretic Approach”. In: Proceedings of the Third In-
ternational Workshop on Computing Education Research. Atlanta Georgia USA:
ACM, Sept. 2007, pp. 111-122. ISBN: 978-1-59593-841-1. DOI: 10. 1145/
1288580.1288595.

Michael E. Caspersen and Henrik Barbak Christensen. “Here, There and Ev-
erywhere - on the Recurring Use of Turtle Graphics in CS1”. In: Proceedings
of the Australasian Conference on Computing Education. ACSE ’00. New York,
NY, USA: Association for Computing Machinery, Dec. 2000, pp. 34-40. ISBN:
978-1-58113-271-7. DOI: 10.1145/359369.359375.

Richard Catrambone. “The Subgoal Learning Model: Creating Better Exam-
ples so That Students Can Solve Novel Problems.” In: Journal of experimental
psychology: General 127.4 (1998), p. 355.

Walter Cazzola and Diego Mathias Olivares. “Gradually Learning Program-
ming Supported by a Growable Programming Language”. In: IEEE Transac-
tions on Emerging Topics in Computing 4.3 (July 2016), pp. 404-415. ISSN:
2168-6750. DOIL: 10.1109/TETC.2015.2446192.

Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. “What’s Wrong with Computational Notebooks? Pain Points, Needs, and
Design Opportunities”. In: Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. CHI '20. New York, NY, USA: Association for
Computing Machinery, Apr. 2020, pp. 1-12. ISBN: 978-1-4503-6708-0. DOI:
10.1145/3313831.3376729.

Mark Chen et al. Evaluating Large Language Models Trained on Code. July 2021.
arXiv: 2107 . 03374 [cs]. URL: http://arxiv.org/abs/2107 .03374
(visited on 10/18/2022).

Jacqui Chetty. “Combatting the War Against Machines: An Innovative Hands-
on Approach to Coding”. In: Robotics in STEM Education. Ed. by Myint Swe
Khine. Cham: Springer International Publishing, 2017, pp. 59-83. ISBN: 978-
3-319-57786-9. DOL: 10.1007/978-3-319-57786-9_3.

Luca Chiodini, Joey Bevilacqua, and Matthias Hauswirth. “Surveying Upper-
Secondary Teachers on Programming Misconceptions”. In: Proceedings of the
2025 ACM Conference on International Computing Education Research - Volume
1. Vol. 1. ICER ’25. New York, NY, USA: Association for Computing Machinery,
Aug. 2025. ISBN: 979-8-4007-1340-8. DOI: 10.1145/3702652.3744227.

https://doi.org/10.1145/1288580.1288595
https://doi.org/10.1145/1288580.1288595
https://doi.org/10.1145/359369.359375
https://doi.org/10.1109/TETC.2015.2446192
https://doi.org/10.1145/3313831.3376729
https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.1007/978-3-319-57786-9_3
https://doi.org/10.1145/3702652.3744227

295 REFERENCES

[49] Luca Chiodini, Joey Bevilacqua, and Matthias Hauswirth. “The Toolbox of
Functions: Teaching Code Reuse in Schools”. In: Proceedings of the 6th Euro-
pean Conference on Software Engineering Education. ECSEE °25. New York, NY,
USA: Association for Computing Machinery, June 2025, pp. 185-189. ISBN:
979-8-4007-1282-1. DOI: 10.1145/3723010.3723029.

[50] Luca Chiodini and Matthias Hauswirth. “Wrong Answers for Wrong Reasons:
The Risks of Ad Hoc Instruments”. In: Proceedings of the 21st Koli Calling In-
ternational Conference on Computing Education Research. Koli Calling ’21. New
York, NY, USA: ACM, Nov. 2021, pp. 1-11. ISBN: 978-1-4503-8488-9. DOI:
10.1145/3488042.3488045.

[51] Luca Chiodini, Matthias Hauswirth, and Andrea Gallidabino. “Conceptual Checks
for Programming Teachers”. In: Technology-Enhanced Learning for a Free, Safe,
and Sustainable World. Ed. by Tinne De Laet, Roland Klemke, Carlos Alario-
Hoyos, Isabel Hilliger, and Alejandro Ortega-Arranz. Vol. 12884. Cham: Springer
International Publishing, 2021, pp. 399-403. ISBN: 978-3-030-86436-1. DOI:
10.1007/978-3-030-86436-1_43.

[52] Luca Chiodini, Igor Moreno Santos, Andrea Gallidabino, Anya Tafliovich, An-
dré L. Santos, and Matthias Hauswirth. “A Curated Inventory of Programming
Language Misconceptions”. In: Proceedings of the 26th ACM Conference on In-
novation and Technology in Computer Science Education V. 1. ITiCSE "21. New
York, NY, USA: Association for Computing Machinery, June 2021, pp. 380-
386. ISBN: 978-1-4503-8214-4. DOI: 10.1145/3430665.3456343.

[53] Luca Chiodini, Igor Moreno Santos, and Matthias Hauswirth. “Expressions in
Java: Essential, Prevalent, Neglected?” In: Proceedings of the 2022 ACM SIG-
PLAN International Symposium on SPLASH-E. SPLASH-E 2022. New York, NY,
USA: ACM, Dec. 2022, pp. 41-51. ISBN: 978-1-4503-9900-5. DOI: 10.1145/
3563767 .3568131.

[54] Luca Chiodini, Simone Piatti, and Matthias Hauswirth. ‘Judicious: API Doc-
umentation for Novices”. In: Proceedings of the 2024 ACM SIGPLAN Interna-
tional Symposium on SPLASH-E. SPLASH-E 2024. New York, NY, USA: Asso-
ciation for Computing Machinery, 2024, pp. 1-9. ISBN: 979-8-4007-1216-6.
DOI: 10.1145/3689493.3689987.

[55] Luca Chiodini, Juha Sorva, and Matthias Hauswirth. “Teaching Programming
with Graphics: Pitfalls and a Solution”. In: Proceedings of the 2023 ACM SIG-
PLAN International Symposium on SPLASH-E. SPLASH-E 2023. New York, NY,
USA: ACM, Oct. 2023, pp. 1-12. ISBN: 979-8-4007-0390-4. DOI: 10. 1145/
3622780 .3623644.

https://doi.org/10.1145/3723010.3723029
https://doi.org/10.1145/3488042.3488045
https://doi.org/10.1007/978-3-030-86436-1_43
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/3563767.3568131
https://doi.org/10.1145/3563767.3568131
https://doi.org/10.1145/3689493.3689987
https://doi.org/10.1145/3622780.3623644
https://doi.org/10.1145/3622780.3623644

296

REFERENCES

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppéld, and Matthias Hauswirth.
“Two Approaches for Programming Education in the Domain of Graphics: An
Experiment”. In: The Art, Science, and Engineering of Programming 10.1 (Feb.
2025), 14:1-14:48.1SSN: 2473-7321.DOI: 10.22152/programming-journal .
org/2025/10/14.

Alonzo Church. The Calculi of Lambda-Conversion. 1 6. Princeton, New Jersey,
USA: Princeton University Press, 1941.

Douglas H. Clements and Julie S. Meredith. “Research on Logo: Effects and
Efficacy”. In: Journal of Computing in Childhood Education 4 (1993), pp. 263-
90. ISSN: 1043-1055. (Visited on 07/21/2025).

Jacob Cohen. “A Power Primer”. In: Psychological Bulletin 112.1 (July 1992),
pp. 155-159. ISSN: 0033-2909. DOI: 10.1037//0033-2909.112.1.155.

Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences, Rev. Ed. Sta-
tistical Power Analysis for the Behavioral Sciences, Rev. Ed. Hillsdale, NJ, USA:
Lawrence Erlbaum Associates, Inc, 1977. ISBN: 978-0-12-179060-8.

Stephen Cooper, Wanda Dann, and Randy Pausch. “Alice: A 3-D Tool for Intro-
ductory Programming Concepts”. In: Journal of Computing Sciences in Colleges
15.5 (2000), pp. 107-116. DOL: 10.5555/364132.364161.

Steve Cooper and Steve Cunningham. “Teaching Computer Science in Con-
text”. In: ACM Inroads 1.1 (Mar. 2010), pp. 5-8. ISSN: 2153-2184, 2153-2192.
DOI: 10.1145/1721933.1721934.

P. Cope, H. Smith, and M. Simmons. “Misconceptions Concerning Rotation and
Angie in LOGO”. In: Journal of Computer Assisted Learning 8.1 (1992), pp. 16—
24. ISSN: 1365-2729. DOI: 10.1111/3j.1365-2729.1992.tb00381 . x.

Will Crichton. Documentation Generation as Information Visualization. Nov. 2020.
arXiv: 2011.05600 [cs]. URL: http://arxiv.org/abs/2011.05600
(visited on 05/26/2024).

Will Crichton and Shriram Krishnamurthi. “Profiling Programming Language
Learning”. In: Proceedings of the ACM on Programming Languages 8.O0PSLA1
(Apr. 2024), pp. 29-54. ISSN: 2475-1421. DOIL: 10.1145/3649812.

Paul Curzon, Jane Waite, Karl Maton, and James Donohue. “Using Semantic
Waves to Analyse the Effectiveness of Unplugged Computing Activities”. In:
Proceedings of the 15th Workshop on Primary and Secondary Computing Edu-
cation. Virtual Event Germany: ACM, Oct. 2020, pp. 1-10. ISBN: 978-1-4503-
8759-0. DOI: 10.1145/3421590.3421606.

https://doi.org/10.22152/programming-journal.org/2025/10/14
https://doi.org/10.22152/programming-journal.org/2025/10/14
https://doi.org/10.1037//0033-2909.112.1.155
https://doi.org/10.5555/364132.364161
https://doi.org/10.1145/1721933.1721934
https://doi.org/10.1111/j.1365-2729.1992.tb00381.x
https://arxiv.org/abs/2011.05600
http://arxiv.org/abs/2011.05600
https://doi.org/10.1145/3649812
https://doi.org/10.1145/3421590.3421606

297

REFERENCES

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming. GBR:
Academic Press Ltd., 1972. ISBN: 978-0-12-200550-3. URL: https://dl.
acm.org/doi/book/10.5555/1243380.

Joost de Winter and Dimitra Dodou. “Five-Point Likert Items: t Test versus
Mann-Whitney-Wilcoxon”. In: Practical Assessment, Research and Evaluation
15 (Jan. 2010). DOL: 10.7275/bj1lp-ts64.

Christine Dearnley. “A Reflection on the Use of Semi-Structured Interviews”. In:
Nurse Researcher 13.1 (July 2005), pp. 19-28. ISSN: 1351-5578, 2047-8992.
DOI: 10.7748/nr2005.07.13.1.19.c5997.

Tim DeClue. “A Theory of Attrition in Computer Science Education Which Ex-
plores the Effect of Learning Theory, Gender, and Context”. In: (2009).

Douglas K. Detterman. “The Case for the Prosecution: Transfer as an Epiphe-
nomenon”. In: Transfer on Trial: Intelligence, Cognition, and Instruction. West-
port, CT, US: Ablex Publishing, 1993, pp. 1-24. ISBN: 978-0-89391-825-5.

Keith Devlin. “Why Universities Require Computer Science Students to Take
Math”. In: Communications of the ACM 46.9 (Sept. 2003), p. 36. ISSN: 00010782.
DOI: 10.1145/903893.903917.

J. Dewey. Logic: The Theory of Inquiry. Logic: The Theory of Inquiry. Oxford,
England: Holt, 1938, pp. viii, 546.

Edsger W. Dijkstra. “Letters to the Editor: Go to Statement Considered Harm-
ful”. In: Communications of the ACM 11.3 (Mar. 1968), pp. 147-148. ISSN:
0001-0782. DOI: 10.1145/362929.362947.

Edsger W. Dijkstra. “The Humble Programmer”. In: Communications of the
ACM 15.10 (Oct. 1972), pp. 859-866. ISSN: 0001-0782, 1557-7317. DOL:
10.1145/355604.361591.

Ian Drosos, Philip J. Guo, and Chris Parnin. “HappyFace: Identifying and Pre-
dicting Frustrating Obstacles for Learning Programming at Scale”. In: 2017
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
Oct. 2017, pp. 171-179. DOL: 10.1109/VLHCC.2017.8103465.

Benedict Du Boulay. “Some Difficulties of Learning to Program”. In: Journal of
Educational Computing Research 2.1 (Feb. 1986), pp. 57-73. ISSN: 0735-6331.
DOIL: 10.2190/3LFX-9RRF-67T8-UVKO. eprint: https://doi.org/10.
2190/3LFX-9RRF-67T8-UVKO.

Rodrigo Duran, Juha Sorva, and Otto Seppéld. “Rules of Program Behavior”.
In: ACM Transactions on Computing Education 21.4 (Nov. 2021), 33:1-33:37.
DOI: 10.1145/3469128.

https://dl.acm.org/doi/book/10.5555/1243380
https://dl.acm.org/doi/book/10.5555/1243380
https://doi.org/10.7275/bj1p-ts64
https://doi.org/10.7748/nr2005.07.13.1.19.c5997
https://doi.org/10.1145/903893.903917
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/355604.361591
https://doi.org/10.1109/VLHCC.2017.8103465
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.1145/3469128

298

REFERENCES

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Matthias Endler. The Best Programmers I Know. Apr. 2025. URL: https://
web . archive . org/web/20250709084037 / https : //endler . dev/
2025/best-programmers/ (visited on 07/17/2025).

Matthias Felleisen. “On the Expressive Power of Programming Languages”. In:
Science of Computer Programming 17.1 (Dec. 1991), pp. 35-75. ISSN: 0167-
6423.DOL: 10.1016/0167-6423(91)90036-W.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krish-
namurthi. “A Functional I/0O System or, Fun for Freshman Kids”. In: ACM SIG-
PLAN Notices 44.9 (Aug. 2009), pp. 47-58. ISSN: 0362-1340. DOI: 10.1145/
1631687.1596561.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. How to Design Programs, Second Edition: An Introduction to Program-
ming and Computing. Cambridge, MA, USA: MIT Press, May 2018. ISBN: 978-
0-262-34412-8.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. “The TeachScheme! Project: Computing and Programming for Every
Student”. In: (2003).

Matthias Felleisen and Shriram Krishnamurthi. “Why Computer Science Doesn’t
Matter”. In: Communications of the ACM 52.7 (July 2009), pp. 37-40. ISSN:
0001-0782, 1557-7317. DOI: 10.1145/1538788.1538803.

Robert Field. JEP 222: Jshell: The Java Shell (Read-Eval-Print Loop). May 2014.
URL: https://openjdk.org/jeps/222 (visited on 07/11/2024).

Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Benedict du
Boulay, Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis,
Andreas Miihling, Janice L. Pearce, and Andrew Petersen. “Notional Machines
in Computing Education: The Education of Attention”. In: Proceedings of the
Working Group Reports on Innovation and Technology in Computer Science Edu-
cation. ITICSE-WGR ’20. New York, NY, USA: Association for Computing Ma-
chinery, June 2020, pp. 21-50. ISBN: 978-1-4503-8293-9. DOIL: 10 . 1145/
3437800.3439202.

Sally Fincher, Brad Richards, Janet Finlay, Helen Sharp, and Isobel Falconer.
“Stories of Change: How Educators Change Their Practice”. In: 2012 Frontiers
in Education Conference Proceedings. Oct. 2012, pp. 1-6. DOI: 10.1109/FIE.
2012.6462317.

Robert Bruce Findler. DrRacket: The Racket Programming Environment. URL:
https://mirror.racket-lang.org/docs/7.8/pdf/drracket.pdf.

https://web.archive.org/web/20250709084037/https://endler.dev/2025/best-programmers/
https://web.archive.org/web/20250709084037/https://endler.dev/2025/best-programmers/
https://web.archive.org/web/20250709084037/https://endler.dev/2025/best-programmers/
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1145/1631687.1596561
https://doi.org/10.1145/1631687.1596561
https://doi.org/10.1145/1538788.1538803
https://openjdk.org/jeps/222
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1109/FIE.2012.6462317
https://doi.org/10.1109/FIE.2012.6462317
https://mirror.racket-lang.org/docs/7.8/pdf/drracket.pdf

299

REFERENCES

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Sigbjorn Finne and Simon Peyton Jones. “Pictures: A Simple Structured Graph-
ics Model”. In: Proceedings of the 1995 Glasgow Workshop on Functional Pro-
gramming. BCS Learning & Development, July 1995. DOIL: 10.14236/ewic/
FP1995.6.

James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. “The Robots Are Coming: Exploring the Implications of OpenAl
Codex on Introductory Programming”. In: Australasian Computing Education
Conference. ACE’22. New York, NY, USA: Association for Computing Machinery,
Feb. 2022, pp. 10-19. ISBN: 978-1-4503-9643-1. DOIL: 10.1145/3511861.
3511863.

Kathi Fisler. “The Recurring Rainfall Problem”. In: Proceedings of the Tenth
Annual Conference on International Computing Education Research. ICER ’14.
New York, NY, USA: ACM, 2014, pp. 35-42. ISBN: 978-1-4503-2755-8. DOIL:
10.1145/2632320.2632346.

Kathi Fisler, Shriram Krishnamurthi, Benjamin S. Lerner, and Joe Gibbs Politz.
A Data-Centric Introduction to Computing. Version 2024-09-03. [no publisher],
Sept. 2024. URL: https://dcic-world.org/ (visited on 01/29/2025).

Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. “Assessing
and Teaching Scope, Mutation, and Aliasing in Upper-Level Undergraduates”.
In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Sci-
ence Education. Seattle Washington USA: ACM, Mar. 2017, pp. 213-218. ISBN:
978-1-4503-4698-6. DOI: 10.1145/3017680.3017777.

Eric J. Fox. “Contextualistic Perspectives”. In: Handbook of research on ed-
ucational communications and technology 3 (2008), pp. 55-66. (Visited on
02/20/2024).

Patricia Fusch, Gene Fusch, and Lawrence Ness. “Denzin’s Paradigm Shift: Re-
visiting Triangulation in Qualitative Research”. In: Journal of Sustainable Social
Change 10.1 (Jan. 2018). ISSN: 2834-507X. DOI: 10.5590/J0SC.2018.10.
1.02.

Jessica Gale, Meltem Alemdar, Katherine Boice, Diley Hernandez, Sunni New-
ton, Douglas Edwards, and Marion Usselman. “Student Agency in a High School
Computer Science Course”. In: Journal for STEM Education Research 5.2 (Aug.
2022), pp. 270-301. ISSN: 2520-8705, 2520-8713. DOI: 10.1007/s41979-
022-00071-9.

https://doi.org/10.14236/ewic/FP1995.6
https://doi.org/10.14236/ewic/FP1995.6
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/2632320.2632346
https://dcic-world.org/
https://doi.org/10.1145/3017680.3017777
https://doi.org/10.5590/JOSC.2018.10.1.02
https://doi.org/10.5590/JOSC.2018.10.1.02
https://doi.org/10.1007/s41979-022-00071-9
https://doi.org/10.1007/s41979-022-00071-9

300

REFERENCES

[971]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Jeremy Gibbons. “How to Design Co-Programs”. In: Journal of Functional Pro-
gramming 31 (2021), el5. ISSN: 0956-7968, 1469-7653. DOI: 10 . 1017/
S0956796821000113.

Mary L. Gick and Keith J. Holyoak. “Schema Induction and Analogical Trans-
fer”. In: Cognitive Psychology 15.1 (Jan. 1983), pp. 1-38. ISSN: 0010-0285.
DOI: 10.1016/0010-0285(83)90002-6.

Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey Herman, Lisa Kaczmar-
czyk, Michael C. Loui, and Craig Zilles. “Identifying Important and Difficult
Concepts in Introductory Computing Courses Using a Delphi Process”. In: Pro-
ceedings of the 39th SIGCSE Technical Symposium on Computer Science Educa-
tion. SIGCSE ’08. New York, NY, USA: ACM, 2008, pp. 256-260. ISBN: 978-1-
59593-799-5. DOI: 10.1145/1352135.1352226.

Michael H. Goldwasser and David Letscher. “A Graphics Package for the First
Day and Beyond”. In: ACM SIGCSE Bulletin 41.1 (Mar. 2009), pp. 206-210.
ISSN: 0097-8418. DOI: 10.1145/1539024 . 1508945.

Google for Developers. Google I/0 08 Keynote by Marissa Mayer. June 2008.
URL: https://www.youtube.com/watch?v=6x0cAz(7PVs (visited on
07/07/2024).

Kathryn E. Gray and Matthew Flatt. “ProfessorJ: A Gradual Introduction to
Java Through Language Levels”. In: Companion of the 18th Annual ACM SIG-
PLAN Conference on Object-oriented Programming, Systems, Languages, and Ap-
plications. OOPSLA ’'03. New York, NY, USA: ACM, 2003, pp. 170-177. ISBN:
978-1-58113-751-4. DOL: 10.1145/949344 .949394.

Shuchi Grover and Satabdi Basu. “Measuring Student Learning in Introductory
Block-Based Programming: Examining Misconceptions of Loops, Variables, and
Boolean Logic”. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education. Seattle Washington USA: ACM, Mar. 2017,
pp. 267-272. ISBN: 978-1-4503-4698-6. DOI: 10.1145/3017680.3017723.

Philip J. Guo. “Non-Native English Speakers Learning Computer Programming:
Barriers, Desires, and Design Opportunities”. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems - CHI ’18. Montreal QC,
Canada: ACM Press, 2018, pp. 1-14. ISBN: 978-1-4503-5620-6. DOI: 10 .
1145/3173574.3173970.

https://doi.org/10.1017/S0956796821000113
https://doi.org/10.1017/S0956796821000113
https://doi.org/10.1016/0010-0285(83)90002-6
https://doi.org/10.1145/1352135.1352226
https://doi.org/10.1145/1539024.1508945
https://www.youtube.com/watch?v=6x0cAzQ7PVs
https://doi.org/10.1145/949344.949394
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1145/3173574.3173970
https://doi.org/10.1145/3173574.3173970

301

REFERENCES

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Mark Guzdial. “A Media Computation Course for Non-Majors”. In: Proceedings
of the 8th Annual Conference on Innovation and Technology in Computer Science
Education. Thessaloniki Greece: ACM, June 2003, pp. 104-108. ISBN: 978-1-
58113-672-2. DOIL: 10.1145/961511.961542,

Mark Guzdial. “Achieving CS for All Could Take Decades”. In: Communications
of the ACM 65.4 (Apr. 2022), pp. 6-7. ISSN: 0001-0782, 1557-7317. DOI: 10.
1145/3516513.

Mark Guzdial. “Does Contextualized Computing Education Help?” In: ACM
Inroads 1.4 (Dec. 2010), pp. 4-6. ISSN: 2153-2184, 2153-2192. DOI: 10 .
1145/1869746.1869747.

Mark Guzdial. “Exploring Hypotheses about Media Computation”. In: Proceed-
ings of the Ninth Annual International ACM Conference on International Com-
puting Education Research. San Diego San California USA: ACM, Aug. 2013,
pp. 19-26. ISBN: 978-1-4503-2243-0. DOI: 10.1145/2493394 .2493397.

Mark Guzdial. “From Science to Engineering”. In: Communications of the ACM
54.2 (Feb. 2011), pp. 37-39. ISSN: 0001-0782. DOI: 10.1145/1897816 .
1897831.

Pontus Haglund, Filip Strombéack, and Linda Mannila. “Understanding Stu-
dents’ Failure to Use Functions as a Tool for Abstraction — An Analysis of Ques-
tionnaire Responses and Lab Assignments in a CS1 Python Course”. In: Infor-
matics in Education 20.4 (Dec. 2021), pp. 583-614. ISSN: 1648-5831, 2335-
8971.DOI: 10.15388/infedu.2021.26.

Brian Harvey. Computer Science Logo Style: Beyond Programming. 2nd ed. Vol. 3.
Exploring with LOGO. Cambridge, MA, USA: MIT Press, Mar. 1997. ISBN: 978-
0-262-58150-9.

Brian Harvey. Computer Science Logo Style: Symbolic Computing. 2nd ed. Vol. 1.
Exploring with LOGO. Cambridge, MA, USA: MIT Press, Mar. 1997. ISBN: 978-
0-262-58148-6.

Brian Harvey, Daniel D. Garcia, Tiffany Barnes, Nathaniel Titterton, Daniel Ar-
mendariz, Luke Segars, Eugene Lemon, Sean Morris, and Josh Paley. “SNAP!
(Build Your Own Blocks)”. In: Proceeding of the 44th ACM Technical Sympo-
sium on Computer Science Education. Denver Colorado USA: ACM, Mar. 2013,
pp. 759-759. ISBN: 978-1-4503-1868-6. DOI: 10.1145/2445196.2445507.

Kieran Healy. “Fuck Nuance”. In: Sociological Theory 35.2 (June 2017), pp. 118-
127.1SSN: 0735-2751. DOIL: 10.1177/0735275117709046.

https://doi.org/10.1145/961511.961542
https://doi.org/10.1145/3516513
https://doi.org/10.1145/3516513
https://doi.org/10.1145/1869746.1869747
https://doi.org/10.1145/1869746.1869747
https://doi.org/10.1145/2493394.2493397
https://doi.org/10.1145/1897816.1897831
https://doi.org/10.1145/1897816.1897831
https://doi.org/10.15388/infedu.2021.26
https://doi.org/10.1145/2445196.2445507
https://doi.org/10.1177/0735275117709046

302 REFERENCES

[115] Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. “Helium, for Learn-
ing Haskell”. In: Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell.
Haskell ’03. New York, NY, USA: Association for Computing Machinery, Aug.
2003, pp. 62-71.ISBN: 978-1-58113-758-3.DOI: 10.1145/871895.871902.

[116] Mary Hegarty and David A. Waller. “Individual Differences in Spatial Abilities”.
In: The Cambridge Handbook of Visuospatial Thinking. New York, NY, US: Cam-
bridge University Press, 2005, pp. 121-169. ISBN: 978-0-521-80710-4. DOIL:
10.1017/CB09780511610448.005.

[117] Peter Henderson. “Functional Geometry”. In: Proceedings of the 1982 ACM Sym-
posium on LISP and Functional Programming. LFP ’82. New York, NY, USA:
Association for Computing Machinery, Aug. 1982, pp. 179-187. ISBN: 978-0-
89791-082-8. DOI: 10.1145/800068.802148.

[118] Felienne Hermans. “Hedy: A Gradual Language for Programming Education”.
In: Proceedings of the 2020 ACM Conference on International Computing Educa-
tion Research. ICER ’20. New York, NY, USA: Association for Computing Ma-
chinery, Aug. 2020, pp. 259-270. ISBN: 978-1-4503-7092-9. DOIL: 10.1145/
3372782.3406262.

[119] Felienne Hermans and Efthimia Aivaloglou. “To Scratch or Not to Scratch?
A Controlled Experiment Comparing Plugged First and Unplugged First Pro-
gramming Lessons”. In: Proceedings of the 12th Workshop on Primary and Sec-
ondary Computing Education. WiPSCE '17. New York, NY, USA: Association for
Computing Machinery, Nov. 2017, pp. 49-56. ISBN: 978-1-4503-5428-8. DOI:
10.1145/3137065.3137072.

[120] Rich Hickey. Simple Made Easy. Strange Loop Conference, Sept. 2021. URL:
https://www.youtube.com/watch?v=Sxd0UGdseq4 (visited on 07/17/2025).

[121] Charles Antony Richard Hoare. “Notes on Data Structuring”. In: Structured Pro-
gramming. Academic Press Ltd., 1972, pp. 83-174. (Visited on 07/08/2025).

[122] Simon Holland, Robert Griffiths, and Mark Woodman. “Avoiding Object Mis-
conceptions”. In: Proceedings of the Twenty-eighth SIGCSE Technical Symposium
on Computer Science Education. SIGCSE ’97. New York, NY, USA: ACM, 1997,
pp. 131-134. ISBN: 978-0-89791-889-3. DOI: 10.1145/268084 .268132.

[123] Kristina Holsapple and Austin Cory Bart. “Designing Designer: The Evidence-
Oriented Design Process of a Pedagogical Interactive Graphics Python Library”.
In: Proceedings of the 53rd ACM Technical Symposium on Computer Science Ed-
ucation V. 1. SIGCSE 2022. New York, NY, USA: Association for Computing

https://doi.org/10.1145/871895.871902
https://doi.org/10.1017/CBO9780511610448.005
https://doi.org/10.1145/800068.802148
https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1145/3137065.3137072
https://www.youtube.com/watch?v=SxdOUGdseq4
https://doi.org/10.1145/268084.268132

303

REFERENCES

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

Machinery, Feb. 2022, pp. 85-91. ISBN: 978-1-4503-9070-5. DOIL: 10.1145/
3478431.3499363.

R. C. Holt, D. B. Wortman, D. T. Barnard, and J. R. Cordy. “SP/k: A System
for Teaching Computer Programming”. In: Commun. ACM 20.5 (May 1977),
pp. 301-309. ISSN: 0001-0782. DOI: 10.1145/359581.359586.

Richard C. Holt and David B. Wortman. “A Sequence of Structured Subsets of
PL/T”. In: Proceedings of the Fourth SIGCSE Technical Symposium on Computer
Science Education. SIGCSE "74. New York, NY, USA: ACM, 1974, pp. 129-132.
DOI: 10.1145/800183.810456.

Jason Hong. “The Use of Java as an Introductory Programming Language”. In:
XRDS: Crossroads, The ACM Magazine for Students 4.4 (May 1998), pp. 8-13.
ISSN: 1528-4972, 1528-4980. DOI: 10.1145/333140.333145.

Kenneth R. Howe. “Against the Quantitative-Qualitative Incompatibility Thesis
or Dogmas Die Hard”. In: Educational Researcher 17.8 (1988), pp. 10-16. ISSN:
0013-189X. DOI: 10.2307/1175845. JSTOR: 1175845.

Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. “Iden-
tifying and Correcting Java Programming Errors for Introductory Computer
Science Students”. In: Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education. SIGCSE ’03. New York, NY, USA: Association for
Computing Machinery, Jan. 2003, pp. 153-156. ISBN: 978-1-58113-648-7.
DOI: 10.1145/611892.611956.

Paul Hudak. The Haskell School of Expression: Learning Functional Programming
Through Multimedia. 1st ed. Cambridge University Press, Feb. 2000. ISBN:
978-0-521-64338-2. DOI: 10.1017/CB09780511818073.

Cruz Izu and Peter Dinh. “Can Novice Programmers Write C Functions?” In:
2018 IEEE International Conference on Teaching, Assessment, and Learning for
Engineering (TALE). Wollongong, NSW: IEEE, Dec. 2018, pp. 965-970. ISBN:
978-1-5386-6522-0. DOI: 10.1109/TALE.2018.8615375.

Java® Platform, Standard Edition & Java Development Kit Version 21 API Spec-
ification. URL: https://docs.oracle.com/en/java/javase/21/docs/
api/index.html (visited on 07/03/2024).

Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report: ISO Pascal
Standard. Springer Science & Business Media, Dec. 2012. ISBN: 978-1-4612-
4450-9.

JEP 512: Compact Source Files and Instance Main Methods. URL: https://
openjdk.org/jeps/512 (visited on 07/07/2025).

https://doi.org/10.1145/3478431.3499363
https://doi.org/10.1145/3478431.3499363
https://doi.org/10.1145/359581.359586
https://doi.org/10.1145/800183.810456
https://doi.org/10.1145/333140.333145
https://doi.org/10.2307/1175845
http://www.jstor.org/stable/1175845
https://doi.org/10.1145/611892.611956
https://doi.org/10.1017/CBO9780511818073
https://doi.org/10.1109/TALE.2018.8615375
https://docs.oracle.com/en/java/javase/21/docs/api/index.html
https://docs.oracle.com/en/java/javase/21/docs/api/index.html
https://openjdk.org/jeps/512
https://openjdk.org/jeps/512

304 REFERENCES

[134] Fionnuala Johnson, Stephen McQuistin, and John O’Donnell. “Analysis of Stu-
dent Misconceptions Using Python as an Introductory Programming Language”.
In: Proceedings of the 4th Conference on Computing Education Practice 2020.
Durham United Kingdom: ACM, Jan. 2020, pp. 1-4. ISBN: 978-1-4503-7729-
4.DOI: 10.1145/3372356.3372360.

[135] Jeremiah W. Johnson. “Benefits and Pitfalls of Jupyter Notebooks in the Class-
room”. In: Proceedings of the 21st Annual Conference on Information Technology
Education. Virtual Event USA: ACM, Oct. 2020, pp. 32-37. ISBN: 978-1-4503-
7045-5. DOI: 10.1145/3368308.3415397.

[136] R. Burke Johnson and Anthony J. Onwuegbuzie. “Mixed Methods Research: A
Research Paradigm Whose Time Has Come”. In: Educational Researcher 33.7
(Oct. 2004), pp. 14-26.ISSN: 0013-189X. DOI: 10.3102/0013189X033007014.

[137] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. “Advances in
Dataflow Programming Languages”. In: ACM Comput. Surv. 36.1 (Mar. 2004),
pp. 1-34. ISSN: 0360-0300. DOI: 10.1145/1013208.1013209.

[138] Cory J. Kapser and Michael W. Godfrey. ““Cloning Considered Harmful” Con-
sidered Harmful: Patterns of Cloning in Software”. In: Empirical Software En-
gineering 13.6 (Dec. 2008), pp. 645-692. ISSN: 1573-7616. DOIL: 10.1007/
s10664-008-9076-6.

[139] Reka Kassai, Judit Futo, Zsolt Demetrovics, and Zsofia K. Takacs. “A Meta-
Analysis of the Experimental Evidence on the Near- and Far-Transfer Effects
Among Children’s Executive Function Skills”. In: Psychological Bulletin 145.2
(2019), pp. 165-188. ISSN: 1939-1455(Electronic),0033-2909 (Print). DOL:
10.1037/bul0000180.

[140] Cazembe Kennedy and Eileen T. Kraemer. “Qualitative Observations of Student
Reasoning: Coding in the Wild”. In: Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science Education. Aberdeen Scotland
Uk: ACM, July 2019, pp. 224-230. ISBN: 978-1-4503-6895-7. DOI: 10.1145/
3304221.3319751.

[141] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. 2.
ed., 52. print. Prentice-Hall Software Series. Upper Saddle River, NJ: Prentice-
Hall PTR, 2014. ISBN: 978-0-13-110362-7.

[142] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. “Code Quality Issues in
Student Programs”. In: Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education. ITICSE "17. New York, NY, USA:

https://doi.org/10.1145/3372356.3372360
https://doi.org/10.1145/3368308.3415397
https://doi.org/10.3102/0013189X033007014
https://doi.org/10.1145/1013208.1013209
https://doi.org/10.1007/s10664-008-9076-6
https://doi.org/10.1007/s10664-008-9076-6
https://doi.org/10.1037/bul0000180
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1145/3304221.3319751

305

REFERENCES

[143]

[144]

[145]

[146]

[147]

[148]

[149]

ACM, June 2017, pp. 110-115. ISBN: 978-1-4503-4704-4. DOIL: 10 . 1145/
3059009.3059061.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias
Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Syl-
vain Corlay, Paul Ivanov, Damian Avila, Safia Abdalla, Carol Willing, and Jupyter
development team. ‘Jupyter Notebooks — a Publishing Format for Reproducible
Computational Workflows”. In: 20th International Conference on Electronic Pub-
lishing (01/01/16). Ed. by Fernando Loizides and Birgit Scmidt. IOS Press,
2016, pp. 87-90. DOI: 10.3233/978-1-61499-649-1-87.

Jonathan Knudsen. Java 2D Graphics. O’Reilly, 1999. ISBN: 978-1-56592-484-
0.

Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. “An Ex-
ploratory Study of How Developers Seek, Relate, and Collect Relevant Infor-
mation during Software Maintenance Tasks”. In: IEEE Transactions on Soft-
ware Engineering 32.12 (Dec. 2006), pp. 971-987. ISSN: 1939-3520. DOIL:
10.1109/TSE.2006.116.

Andreas P. Koenzen, Neil A. Ernst, and Margaret-Anne D. Storey. “Code Du-
plication and Reuse in Jupyter Notebooks”. In: 2020 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC). New York, NY, USA:
ACM, Aug. 2020, pp. 1-9. DOI: 10.1109/VL/HCC50065.2020.9127202.

Tobias Kohn. “Teaching Python Programming to Novices: Addressing Miscon-
ceptions and Creating a Development Environment”. PhD thesis. ETH Zurich,
2017, 165 p. DOI: 10.3929/ETHZ-A-010871088. HDL: 20.500.11850/
129666.

Michael Kolling, Bruce Quig, Andrew Patterson, and John Rosenberg. “The
BlueJ System and Its Pedagogy”. In: Computer Science Education 13.4 (Dec.
2003), pp. 249-268. ISSN: 0899-3408, 1744-5175. DOI: 10 . 1076/ csed .
13.4.249.17496.

Herman Koppelman and Betsy van Dijk. “Teaching Abstraction in Introduc-
tory Courses”. In: Proceedings of the Fifteenth Annual Conference on Innovation
and Technology in Computer Science Education - ITiCSE ’10. Bilkent, Ankara,
Turkey: ACM Press, 2010, p. 174. ISBN: 978-1-60558-729-5. DOI: 10.1145/
1822090.1822140.

https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1109/VL/HCC50065.2020.9127202
https://doi.org/10.3929/ETHZ-A-010871088
http://hdl.handle.net/20.500.11850/129666
http://hdl.handle.net/20.500.11850/129666
https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/10.1145/1822090.1822140
https://doi.org/10.1145/1822090.1822140

306 REFERENCES

[150] Rainer Koschke. “Survey of Research on Software Clones”. In: Duplication, Re-
dundancy, and Similarity in Software. Vol. 6301. Dagstuhl Seminar Proceed-
ings (DagSemProc). Dagstuhl, Germany: Schloss Dagstuhl, 2007, pp. 1-24.
DOI: 10.4230/DagSemProc.06301.13.

[151] Douglas Kramer. “API Documentation from Source Code Comments: A Case
Study of Javadoc”. In: Proceedings of the 17th Annual International Conference
on Computer Documentation. New Orleans Louisiana USA: ACM, Oct. 1999,
pp. 147-153. ISBN: 978-1-58113-072-0. DOI: 10.1145/318372.318577.

[152] Glenn E. Krasner and Stephen T. Pope. “A Description of the Model-View-
Controller User Interface Paradigm in the Smalltalk-80 System”. In: Journal of
object oriented programming 1.3 (1988), pp. 26-49. URL: http://heaveneverywhere.
com/stp/PostScript/mvc.pdf (visited on 07/20/2025).

[153] Shriram Krishnamurthi. Programming Languages: Application and Interpreta-
tion. 3rd ed. Online: Electronic textbook, Feb. 2023. URL: https: //www .
plai.org/ (visited on 03/27/2024).

[154] Shriram Krishnamurthi. “Teaching Programming Languages in a Post-Linnaean
Age”. In: ACM SIGPLAN Notices 43.11 (Nov. 2008), pp. 81-83. ISSN: 0362-
1340. DOI: 10.1145/1480828.1480846.

[155] Shriram Krishnamurthi and Kathi Fisler. “Programming Paradigms and Be-
yond”. In: The Cambridge Handbook of Computing Education Research. Ed. by
Anthony V. Robins and Sally A. Fincher. Cambridge Handbooks in Psychol-
ogy. Cambridge: Cambridge University Press, 2019, pp. 377-413. ISBN: 978-
1-108-49673-5. DOIL: 10.1017/9781108654555.014.

[156] Amruth N. Kumar, Rajendra K. Raj, Sherif G. Aly, Monica D. Anderson, Brett
A. Becker, Richard L. Blumenthal, Eric Eaton, Susan L. Epstein, Michael Gold-
weber, Pankaj Jalote, Douglas Lea, Michael Oudshoorn, Marcelo Pias, Susan
Reiser, Christian Servin, Rahul Simha, Titus Winters, and Qiao Xiang. Com-
puter Science Curricula 2023. New York, NY, USA: ACM, Jan. 2024. ISBN: 979-
8-4007-1033-9. DOI: 10.1145/3664191.

[157] Steinar Kvale. InterViews: An Introduction to Qualitative Research Interviewing.
InterViews: An Introduction to Qualitative Research Interviewing. Thousand
Oaks, CA, US: Sage Publications, Inc, 1994, pp. xvii, 326. ISBN: 978-0-8039-
5819-7.

[158] Maxime Lamothe, Yann-Gaél Guéhéneuc, and Weiyi Shang. “A Systematic Re-
view of API Evolution Literature”. In: ACM Comput. Surv. 54.8 (Oct. 2021),
171:1-171:36. ISSN: 0360-0300. DOI: 10.1145/3470133.

https://doi.org/10.4230/DagSemProc.06301.13
https://doi.org/10.1145/318372.318577
http://heaveneverywhere.com/stp/PostScript/mvc.pdf
http://heaveneverywhere.com/stp/PostScript/mvc.pdf
https://www.plai.org/
https://www.plai.org/
https://doi.org/10.1145/1480828.1480846
https://doi.org/10.1017/9781108654555.014
https://doi.org/10.1145/3664191
https://doi.org/10.1145/3470133

307

REFERENCES

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

Kathleen J. Lehman, Julia Rose Karpicz, Veronika Rozhenkova, Jamelia Har-
ris, and Tomoko M. Nakajima. “Growing Enrollments Require Us to Do More:
Perspectives on Broadening Participation During an Undergraduate Comput-
ing Enrollment Boom”. In: Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education. Virtual Event USA: ACM, Mar. 2021, pp. 809-
815. ISBN: 978-1-4503-8062-1. DOI: 10.1145/3408877 .3432370.

Teemu Lehtinen, Aleksi Lukkarinen, and Lassi Haaranen. “Students Struggle to
Explain Their Own Program Code”. In: Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1. June 2021,
pp. 206-212. DOI: 10.1145/3430665.3456322. arXiv: 2104.06710 [cs].

Shing-On Leung. “A Comparison of Psychometric Properties and Normality in
4-, 5-, 6-, and 11-Point Likert Scales”. In: Journal of Social Service Research
37.4 (July 2011), pp. 412-421.ISSN: 0148-8376. DOLI: 10.1080/01488376.
2011.580697.

Ronit Ben-Bassat Levy and Mordechai Ben-Ari. “We Work so Hard and They
Don’t Use It: Acceptance of Software Tools by Teachers”. In: ACM SIGCSE
Bulletin 39.3 (June 2007), pp. 246-250. ISSN: 0097-8418. DOI: 10. 1145/
1269900.1268856.

Suzanne Pawlan Levy. “Computer Language Usage in CS1: Survey Results”.
In: ACM SIGCSE Bulletin 27.3 (Sept. 1995), pp. 21-26. ISSN: 0097-8418. DOI:
10.1145/209849.209853.

Colleen M. Lewis. “The Importance of Students’ Attention to Program State: A
Case Study of Debugging Behavior”. In: Proceedings of the Ninth Annual Inter-
national Conference on International Computing Education Research. ICER ’12.
New York, NY, USA: ACM, Sept. 2012, pp. 127-134. ISBN: 978-1-4503-1604-
0.DOLI: 10.1145/2361276.2361301.

John Locke. An Essay Concerning Human Understanding. Kay & Troutman,
1847.

Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. “DéjaVu: A Map of Code Duplicates on GitHub”.
In: Proc. ACM Program. Lang. 1.00PSLA (Oct. 2017), 84:1-84:28. DOI: 10.
1145/3133908.

Kuang-Chen Lu and Shriram Krishnamurthi. “Identifying and Correcting Pro-
gramming Language Behavior Misconceptions”. In: Proc. ACM Program. Lang.
8.00PSLA1 (Apr. 2024), 106:334-106:361. DOI: 10.1145/3649823.

https://doi.org/10.1145/3408877.3432370
https://doi.org/10.1145/3430665.3456322
https://arxiv.org/abs/2104.06710
https://doi.org/10.1080/01488376.2011.580697
https://doi.org/10.1080/01488376.2011.580697
https://doi.org/10.1145/1269900.1268856
https://doi.org/10.1145/1269900.1268856
https://doi.org/10.1145/209849.209853
https://doi.org/10.1145/2361276.2361301
https://doi.org/10.1145/3133908
https://doi.org/10.1145/3133908
https://doi.org/10.1145/3649823

308 REFERENCES

[168] Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu.
“What Happens When Students Switch (Functional) Languages (Experience
Report)”. In: Proceedings of the ACM on Programming Languages 7.ICFP (Aug.
2023), 215:796-215:812. DOI: 10.1145/3607857.

[169] Aleksi Lukkarinen and Juha Sorva. “Classifying the Tools of Contextualized
Programming Education and Forms of Media Computation”. In: Proceedings of
the 16th Koli Calling International Conference on Computing Education Research.
Koli Finland: ACM, Nov. 2016, pp. 51-60. ISBN: 978-1-4503-4770-9. DOI: 10.
1145/2999541.2999551.

[170] Linxiao Ma, John Ferguson, Marc Roper, and Murray Wood. “Investigating the
Viability of Mental Models Held by Novice Programmers”. In: Proceedings of the
38th SIGCSE Technical Symposium on Computer Science Education. Covington
Kentucky USA: ACM, Mar. 2007, pp. 499-503. ISBN: 978-1-59593-361-4. DOI:
10.1145/1227310.1227481.

[171] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn
Eastmond. “The Scratch Programming Language and Environment”. In: ACM
Transactions on Computing Education 10.4 (Nov. 2010), pp. 1-15. ISSN: 1946-
6226, 1946-6226. DOI: 10.1145/1868358.1868363.

[172] John H. Maloney and Randall B. Smith. “Directness and Liveness in the Mor-
phic User Interface Construction Environment”. In: Proceedings of the 8th An-
nual ACM Symposium on User Interface and Software Technology. Pittsburgh
Pennsylvania USA: ACM, Dec. 1995, pp. 21-28. ISBN: 978-0-89791-709-4.
DOI: 10.1145/215585.215636.

[173] Melissa Hgegh Marcher, Ingrid Maria Christensen, Pawet Grabarczyk, Therese
Graversen, and Claus Brabrand. “Computing Educational Activities Involving
People Rather Than Things Appeal More to Women (CS1 Appeal Perspective)”.
In: Proceedings of the 17th ACM Conference on International Computing Educa-
tion Research. Virtual Event USA: ACM, Aug. 2021, pp. 145-156. ISBN: 978-1-
4503-8326-4. DOL: 10.1145/3446871.3469761.

[174] LaurenE. Margulieux, Mark Guzdial, and Richard Catrambone. “Subgoal-Labeled
Instructional Material Improves Performance and Transfer in Learning to De-
velop Mobile Applications”. In: Proceedings of the Ninth Annual International
Conference on International Computing Education Research. Auckland New Zealand:
ACM, Sept. 2012, pp. 71-78. ISBN: 978-1-4503-1604-0. DOI: 10 . 1145/
2361276.2361291.

https://doi.org/10.1145/3607857
https://doi.org/10.1145/2999541.2999551
https://doi.org/10.1145/2999541.2999551
https://doi.org/10.1145/1227310.1227481
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/215585.215636
https://doi.org/10.1145/3446871.3469761
https://doi.org/10.1145/2361276.2361291
https://doi.org/10.1145/2361276.2361291

309 REFERENCES

[175] Lauren E. Margulieux, Briana B. Morrison, and Adrienne Decker. “Reducing
Withdrawal and Failure Rates in Introductory Programming with Subgoal La-
beled Worked Examples”. In: International Journal of STEM Education 7.1 (Dec.
2020), p. 19. ISSN: 2196-7822. DOI: 10.1186/s40594-020-00222-7.

[176] Karl Maton. “Making Semantic Waves: A Key to Cumulative Knowledge-Building”.
In: Linguistics and Education 24 (Apr. 2013), pp. 8-22. DOIL: 10. 1016/ 7 .
linged.2012.11.005.

[177] Karl Maton. “Semantic Waves: Context, Complexity and Academic Discourse”.
In: Accessing Academic Discourse. 1st. Routledge, Nov. 2019, p. 27. ISBN: 978-
0-429-28072-6. DOI: 10.4324/9780429280726-3.

[178] John McCarthy, R. Brayton, D. Edwards, P. Fox, L. Hodes, D. Luckham, K. Ma-
ling, D. Park, and S. Russell. LISP I Programmers Manual. Technical Report.
Cambridge, MA: Artificial Intelligence Group, MIT Computation Center and
Research Laboratory, Mar. 1960.

[179] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Ha-
gan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and
Tadeusz Wilusz. “A Multi-national, Multi-institutional Study of Assessment of
Programming Skills of First-year CS Students”. In: Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Education. ITiCSE-
WGR ’01. New York, NY, USA: ACM, 2001, pp. 125-180. DOI: 10 . 1145/
572133.572137.

[180] Tanya J. McGill and Simone E. Volet. “A Conceptual Framework for Analyzing
Students’ Knowledge of Programming”. In: Journal of Research on Computing in
Education 29.3 (Mar. 1997), pp. 276-297. ISSN: 0888-6504. DOI: 10.1080/
08886504 .1997.10782199.

[181] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. “Habits of
Programming in Scratch”. In: Proceedings of the 16th Annual Joint Conference
on Innovation and Technology in Computer Science Education. ITiCSE ’11. New
York, NY, USA: ACM, June 2011, pp. 168-172. ISBN: 978-1-4503-0697-3. DOI:
10.1145/1999747.1999796.

[182] Bartosz Milewski. Category Theory for Programmers. Blurb, Aug. 2019. ISBN:
978-0-464-24387-8.

[183] CraigS. Miller and Amber Settle. “Some Trouble with Transparency: An Analy-
sis of Student Errors with Object-oriented Python”. In: Proceedings of the 2016
ACM Conference on International Computing Education Research. Melbourne

https://doi.org/10.1186/s40594-020-00222-7
https://doi.org/10.1016/j.linged.2012.11.005
https://doi.org/10.1016/j.linged.2012.11.005
https://doi.org/10.4324/9780429280726-3
https://doi.org/10.1145/572133.572137
https://doi.org/10.1145/572133.572137
https://doi.org/10.1080/08886504.1997.10782199
https://doi.org/10.1080/08886504.1997.10782199
https://doi.org/10.1145/1999747.1999796

310

REFERENCES

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

VIC Australia: ACM, Aug. 2016, pp. 133-141. ISBN: 978-1-4503-4449-4. DOLI:
10.1145/2960310.2960327.

Claudio Mirolo, Cruz Izu, Violetta Lonati, and Emanuele Scapin. “Abstrac-
tion in Computer Science Education: An Overview”. In: Informatics in Edu-
cation 20.4 (Aug. 2022), pp. 615-639. ISSN: 1648-5831, 2335-8971. DOI:
10.15388/infedu.2021.27.

Igor Moreno Santos. “Sound Notional Machines”. PhD thesis. Universita della
Svizzera italiana, 2023. URL: https://n2t .net/ark:/12658/srd1328768.

Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. “Subgoals, Con-
text, and Worked Examples in Learning Computing Problem Solving”. In: Pro-
ceedings of the Eleventh Annual International Conference on International Com-
puting Education Research. ICER ’15. New York, NY, USA: Association for Com-
puting Machinery, Aug. 2015, pp. 21-29. ISBN: 978-1-4503-3630-7. DOI: 10.
1145/2787622.2787733.

Bhagya Munasinghe, Tim Bell, and Anthony Robins. “Unplugged Activities as a
Catalyst When Teaching Introductory Programming”. In: Journal of Pedagogical
Research 7.2 (June 2023), pp. 56-71. ISSN: 2602-3717.DOI: 10.33902/JPR.
202318546.

Brad A. Myers and Jeffrey Stylos. “Improving API Usability”. In: Communica-
tions of the ACM 59.6 (May 2016), pp. 62-69. ISSN: 0001-0782, 1557-7317.
DOI: 10.1145/2896587.

Mitchell J Nathan, Kenneth R Koedinger, and Martha W Alibali. “Expert Blind
Spot: When Content Knowledge Eclipses Pedagogical Content Knowledge”.
2001. URL: https://pact.cs.cmu.edu/pubs/2001 NathanEtAl _
ICCS_EBS.pdf.

Lijun Ni, Tom McKlin, and Mark Guzdial. “How Do Computing Faculty Adopt
Curriculum Innovations?: The Story from Instructors”. In: Proceedings of the
41st ACM Technical Symposium on Computer Science Education. Milwaukee Wis-
consin USA: ACM, Mar. 2010, pp. 544-548.DOI: 10.1145/1734263.1734444.

Tomohiro Nishida, Susumu Kanemune, Yukio Idosaka, Mitaro Namiki, Tim
Bell, and Yasushi Kuno. “A CS Unplugged Design Pattern”. In: ACM SIGCSE
Bulletin 41.1 (Mar. 2009), pp. 231-235. ISSN: 0097-8418. DOI: 10 . 1145/
1539024 .1508951.

Richard Noss. “Children’s Learning of Geometrical Concepts through Logo”.
In: Journal for Research in Mathematics Education 18.5 (1987), pp. 343-362.
ISSN: 0021-8251. DOI: 10.2307/749084. JSTOR: 749084.

https://doi.org/10.1145/2960310.2960327
https://doi.org/10.15388/infedu.2021.27
https://n2t.net/ark:/12658/srd1328768
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.33902/JPR.202318546
https://doi.org/10.33902/JPR.202318546
https://doi.org/10.1145/2896587
https://pact.cs.cmu.edu/pubs/2001_NathanEtAl_ICCS_EBS.pdf
https://pact.cs.cmu.edu/pubs/2001_NathanEtAl_ICCS_EBS.pdf
https://doi.org/10.1145/1734263.1734444
https://doi.org/10.1145/1539024.1508951
https://doi.org/10.1145/1539024.1508951
https://doi.org/10.2307/749084
http://www.jstor.org/stable/749084

311

REFERENCES

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

Frank G. Pagan. “Nested Sublanguages of Algol 68 for Teaching Purposes”. In:
ACM SIGPLAN Notices 15.7 and 8 (July 1980), pp. 72-81. ISSN: 0362-1340,
1558-1160. DOI: 10.1145/947680.947687.

Seymour Papert. Mindstorms: Children, Computers, and Powerful Ideas. USA:
Basic Books, Inc., 1980. ISBN: 978-0-465-04627-0.

Seymour A. Papert. A Computer Laboratory for Elementary Schools. Tech. rep.
AIM-246 / LOGO Memo 1. MIT, Oct. 1971. URL: https://dspace .mit.
edu/handle/1721.1/5834.

Seymour A. Papert and Cynthia Solomon. Twenty Things To Do With A Com-
puter. Tech. rep. AIM-248 / LOGO Memo 3. MIT, June 1971. URL: https:
//dspace.mit.edu/handle/1721.1/5836.

Jack Parkinson and Quintin Cutts. “Investigating the Relationship Between
Spatial Skills and Computer Science”. In: Proceedings of the 2018 ACM Confer-
ence on International Computing Education Research. Espoo Finland: ACM, Aug.
2018, pp. 106-114. ISBN: 978-1-4503-5628-2. DOIL: 10 . 1145/3230977 .
3230990.

David Lorge Parnas. “On the Criteria to Be Used in Decomposing Systems into
Modules”. In: Communications of the ACM 15 (1972), p. 1053. ISSN: 0001-
0782.DOI: 10.1145/361598.361623.

Erik Pasternak, Rachel Fenichel, and Andrew N. Marshall. “Tips for Creating
a Block Language with Blockly”. In: 2017 IEEE Blocks and Beyond Workshop
(B&B). Oct. 2017, pp. 21-24. DOIL: 10.1109/BLOCKS.2017.8120404.

Michael Quinn Patton. Qualitative Research & Evaluation Methods: Integrating
Theory and Practice. Sage publications, 2014. (Visited on 06/26/2025).

Roy D. Pea. “Language-Independent Conceptual “Bugs” in Novice Program-
ming”. In: Journal of educational computing research 2.1 (1986), pp. 25-36.
ISSN: 0735-6331. DOI: 10.2190/689T-1R2A-X4W4-29J2.

Roy D. Pea. Logo Programming and Problem Solving. [Technical Report No. 12.]
Apr. 1983. URL: https : //eric.ed . gov/?7id=ED319371 (visited on
02/07/2025).

Roy D. Pea and D. Midian Kurland. “On the Cognitive Effects of Learning Com-
puter Programming”. In: New Ideas in Psychology 2.2 (Jan. 1984), pp. 137-168.
ISSN: 0732-118X. DOI: 10.1016/0732-118X(84)90018-7.

Charles S. Peirce. “What Pragmatism Is”. In: The Monist 15.2 (1905), pp. 161-
181.ISSN: 0026-9662. JSTOR: 27899577. URL: https://www. jstor.org/
stable/27899577 (visited on 07/22/2025).

https://doi.org/10.1145/947680.947687
https://dspace.mit.edu/handle/1721.1/5834
https://dspace.mit.edu/handle/1721.1/5834
https://dspace.mit.edu/handle/1721.1/5836
https://dspace.mit.edu/handle/1721.1/5836
https://doi.org/10.1145/3230977.3230990
https://doi.org/10.1145/3230977.3230990
https://doi.org/10.1145/361598.361623
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.2190/689T-1R2A-X4W4-29J2
https://eric.ed.gov/?id=ED319371
https://doi.org/10.1016/0732-118X(84)90018-7
http://www.jstor.org/stable/27899577
https://www.jstor.org/stable/27899577
https://www.jstor.org/stable/27899577

312

REFERENCES

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

PEP 257 — Docstring Conventions | Peps.Python.Org. URL: https://peps .
python.org/pep-0257/ (visited on 07/14/2025).

David N. Perkins and Gavriel Salomon. “Transfer of Learning”. In: International
Encyclopedia of Education. Vol. 2. Pergamon Press, 1992, pp. 6452-6457. ISBN:
978-0-08-041046-3.

Denis Charles Phillips and Nicholas C. Burbules. Postpositivism and Educational
Research. Postpositivism and Educational Research. Lanham, MD, US: Rowman
& Littlefield, 2000. ISBN: 978-0-8476-9122-7.

Luna Phipps-Costin, Michael MacLeod, Alex Vo, Tiffany Nguyen, Joe Gibbs
Politz, Shriram Krishnamurthi, and Benjamin S Lerner. “Combining Interactive
and Whole-Program Editing with Repartee”. In: 12 Th Annual Workshop at the
Intersection of PL and HCI. Vol. 12. Boston, MA: Northeastern University, 2021,
pp- 1-11.

Benjamin C. Pierce. Types and Programming Languages. Cambridge, Mass: MIT
Press, 2002. ISBN: 978-0-262-16209-8.

Paul R. Pintrich. “Motivation and Classroom Learning”. In: Handbook of Psy-
chology. John Wiley & Sons, Ltd, 2003. Chap. 6, pp. 103-122. ISBN: 978-0-
471-26438-5. DOI: 10.1002/0471264385.wei0706.

Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel
Patterson, Junsong Li, Anand Chitipothu, and Shriram Krishnamurthi. “Python:
The Full Monty”. In: Proceedings of the 2013 ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems Languages & Applications. OOP-
SLA ’"13. New York, NY, USA: ACM, 2013, pp. 217-232. ISBN: 978-1-4503-
2374-1.DOI: 10.1145/2509136.2509536.

Joe Gibbs Politz and Mia Minnes. Using Jshell. URL: https://ucsd-cse8a-
f18.github.io/notes/jshell/ (visited on 07/07/2025).

G. Polya. How to Solve It: A New Aspect of Mathematical Method. Princeton Uni-
versity Press, 2004. ISBN: 978-0-691-11966-3.

Leo Porter and Beth Simon. “Retaining Nearly One-Third More Majors with
a Trio of Instructional Best Practices in CS1”. In: Proceeding of the 44th ACM
Technical Symposium on Computer Science Education. Denver Colorado USA:
ACM, Mar. 2013, pp. 165-170. ISBN: 978-1-4503-1868-6. DOI: 10 . 1145/
2445196 .2445248.

https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
https://doi.org/10.1002/0471264385.wei0706
https://doi.org/10.1145/2509136.2509536
https://ucsd-cse8a-f18.github.io/notes/jshell/
https://ucsd-cse8a-f18.github.io/notes/jshell/
https://doi.org/10.1145/2445196.2445248
https://doi.org/10.1145/2445196.2445248

313

REFERENCES

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

George J. Posner, Kenneth A. Strike, Peter W. Hewson, and William A. Gertzog.
“Accommodation of a Scientific Conception: Toward a Theory of Conceptual
Change”. In: Science Education 66.2 (Apr. 1982), pp. 211-227. ISSN: 0036-
8326, 1098-237X. DOI: 10.1002/sce.3730660207.

Python Software Foundation. Turtle — Turtle Graphics. URL: https://docs.
python.org/3/library/turtle.html (visited on 06/05/2024).

Yizhou Qian and James Lehman. “Students’ Misconceptions and Other Difficul-
ties in Introductory Programming: A Literature Review”. In: ACM Transactions
on Computing Education 18.1 (Oct. 2017), pp. 1-24. ISSN: 19466226. DOLI:
10.1145/3077618.

Anthony Ralston. “Fortran and the First Course in Computer Science”. In: ACM
SIGCSE Bulletin 3.4 (Dec. 1971), pp. 24-29. ISSN: 0097-8418.DOI: 10. 1145/
382214 .382499.

Casey Reas and Ben Fry. “Processing: Programming for the Media Arts”. In:
Al & SOCIETY 20.4 (Sept. 2006), pp. 526-538. ISSN: 1435-5655. DOI: 10.
1007/s00146-006-0050-9.

Stephen K. Reed, George W. Ernst, and Ranan Banerji. “The Role of Analogy in
Transfer between Similar Problem States”. In: Cognitive Psychology 6.3 (July
1974), pp. 436-450. ISSN: 0010-0285. DOI: 10 . 1016 /0010-0285(74)
90020-6.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver,
Brian Silverman, and Yasmin Kafai. “Scratch: Programming for All”. In: Com-
munications of the ACM 52.11 (Nov. 2009), pp. 60-67. ISSN: 0001-0782. DOI:
10.1145/1592761.1592779.

Dennis M. Ritchie, Stephen C. Johnson, M. E. Lesk, and B. W. Kernighan. “The
C Programming Language”. In: Bell Sys. Tech. J 57.6 (1978), pp. 1991-2019.
(Visited on 12/06/2023).

Eric Roberts. “An Overview of MiniJava”. In: ACM SIGCSE Bulletin 33.1 (Feb.
2001), pp. 1-5. ISSN: 0097-8418. DOI: 10.1145/366413.364525.

Eric Roberts and Keith Schwarz. “A Portable Graphics Library for Introductory
CS”. In: Proceedings of the 18th ACM Conference on Innovation and Technology in
Computer Science Education - ITiCSE ’13. Canterbury, England, UK: ACM Press,
2013, p. 153. ISBN: 978-1-4503-2078-8. DOI: 10.1145/2462476.2465590.

Adam Carl Rule. “Design and Use of Computational Notebooks”. PhD thesis.
University of California, San Diego, 2018.

https://doi.org/10.1002/sce.3730660207
https://docs.python.org/3/library/turtle.html
https://docs.python.org/3/library/turtle.html
https://doi.org/10.1145/3077618
https://doi.org/10.1145/382214.382499
https://doi.org/10.1145/382214.382499
https://doi.org/10.1007/s00146-006-0050-9
https://doi.org/10.1007/s00146-006-0050-9
https://doi.org/10.1016/0010-0285(74)90020-6
https://doi.org/10.1016/0010-0285(74)90020-6
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/366413.364525
https://doi.org/10.1145/2462476.2465590

314 REFERENCES

[226] J. Sajaniemi. “An Empirical Analysis of Roles of Variables in Novice-Level Proce-
dural Programs”. In: Proceedings IEEE 2002 Symposia on Human Centric Com-
puting Languages and Environments. Sept. 2002, pp. 37-39. DOI: 10.1109/
HCC.2002.1046340.

[227] Kate Sanders and Robert McCartney. “Threshold Concepts in Computing: Past,
Present, and Future”. In: Proceedings of the 16th Koli Calling International Con-
ference on Computing Education Research - Koli Calling ’16. Koli, Finland: ACM
Press, 2016, pp. 91-100. ISBN: 978-1-4503-4770-9. DOI: 10.1145/2999541 .
2999546.

[228] Bianca L. Santana and Roberto A. Bittencourt. “Increasing Motivation of CS1
Non-Majors through an Approach Contextualized by Games and Media”. In:
2018 IEEE Frontiers in Education Conference (FIE). Oct. 2018, pp. 1-9. DOIL:
10.1109/FIE.2018.8659011.

[229] Igor Moreno Santos, Matthias Hauswirth, and Nathaniel Nystrom. “Experi-
ences in Bridging from Functional to Object-Oriented Programming”. In: Pro-
ceedings of the 2019 ACM SIGPLAN Symposium on SPLASH-E - SPLASH-E 2019.
Athens, Greece: ACM Press, 2019, pp. 36-40. ISBN: 978-1-4503-6989-3. DOI:
10.1145/3358711.3361628.

[230] Jaromir Savelka, Arav Agarwal, Marshall An, Chris Bogart, and Majd Sakr.
“Thrilled by Your Progress! Large Language Models (GPT-4) No Longer Strug-
gle to Pass Assessments in Higher Education Programming Courses”. In: Pro-
ceedings of the 2023 ACM Conference on International Computing Education Re-
search - Volume 1. Vol. 1. ICER ’23. New York, NY, USA: Association for Com-
puting Machinery, Sept. 2023, pp. 78-92. ISBN: 978-1-4503-9976-0. DOI:
10.1145/3568813.3600142.

[231] Emmanuel Schanzer, Kathi Fisler, and Shriram Krishnamurthi. “Bootstrap: Go-
ing beyond Programming in after-School Computer Science”. In: SPLASH Ed-
ucation Symposium. 2013.

[232] Emmanuel Schanzer, Kathi Fisler, Shriram Krishnamurthi, and Matthias Felleisen.
“Transferring Skills at Solving Word Problems from Computing to Algebra
Through Bootstrap”. In: Proceedings of the 46th ACM Technical Symposium on
Computer Science Education - SIGCSE ’15. Kansas City, Missouri, USA: ACM
Press, 2015, pp. 616-621. ISBN: 978-1-4503-2966-8. DOIL: 10.1145/2676723.
2677238.

https://doi.org/10.1109/HCC.2002.1046340
https://doi.org/10.1109/HCC.2002.1046340
https://doi.org/10.1145/2999541.2999546
https://doi.org/10.1145/2999541.2999546
https://doi.org/10.1109/FIE.2018.8659011
https://doi.org/10.1145/3358711.3361628
https://doi.org/10.1145/3568813.3600142
https://doi.org/10.1145/2676723.2677238
https://doi.org/10.1145/2676723.2677238

315

REFERENCES

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi Fisler. “Creativity,
Customization, and Ownership: Game Design in Bootstrap: Algebra”. In: Pro-
ceedings of the 49th ACM Technical Symposium on Computer Science Education.
Baltimore Maryland USA: ACM, Feb. 2018, pp. 161-166. ISBN: 978-1-4503-
5103-4. DOI: 10.1145/3159450.3159471.

Emmanuel Tanenbaum Schanzer. “Algebraic Functions, Computer Program-
ming, and the Challenge of Transfer”. PhD thesis. Harvard University, 2015.

Otto Seppélé, Petri Thantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
“Do We Know How Difficult the Rainfall Problem Is?” In: Proceedings of the
15th Koli Calling Conference on Computing Education Research. Koli Calling ’15.
New York, NY, USA: ACM, 2015, pp. 87-96. ISBN: 978-1-4503-4020-5. DOL:
10.1145/2828959.2828963.

Sadia Sharmin. “Creativity in CS1: A Literature Review”. In: ACM Transactions
on Computing Education 22.2 (June 2022), pp. 1-26. ISSN: 1946-6226, 1946-
6226. DOL: 10.1145/3459995.

Lee S. Shulman. “Those Who Understand: Knowledge Growth in Teaching”.
In: Educational Researcher 15.2 (Feb. 1986), pp. 4-14. ISSN: 0013-189X. DOI:
10.3102/0013189X015002004.

Valerie J. Shute, Chen Sun, and Jodi Asbell-Clarke. “Demystifying Computa-
tional Thinking”. In: Educational Research Review 22 (Nov. 2017), pp. 142-158.
ISSN: 1747-938X. DOIL: 10.1016/j .edurev.2017.09.003.

Robert M. Siegfried, Katherine G. Herbert-Berger, Kees Leune, and Jason P.
Siegfried. “Trends Of Commonly Used Programming Languages in CS1 And
CS2 Learning”. In: 2021 16th International Conference on Computer Science &
Education (ICCSE). Aug. 2021, pp. 407-412. DOI: 10.1109/ICCSE51940 .
2021.9569444.

Beth Simon, Péivi Kinnunen, Leo Porter, and Dov Zazkis. “Experience Report:
CS1 for Majors with Media Computation”. In: Proceedings of the Fifteenth An-
nual Conference on Innovation and Technology in Computer Science Education.
Bilkent Ankara Turkey: ACM, June 2010, pp. 214-218.DOI: 10.1145/1822090.
18221561.

Robert H. Sloan and Patrick Troy. “CS 0.5: A Better Approach to Introductory
Computer Science for Majors”. In: ACM SIGCSE Bulletin 40.1 (Mar. 2008),
pp. 271-275. ISSN: 0097-8418. DOI: 10.1145/1352322.1352230.

https://doi.org/10.1145/3159450.3159471
https://doi.org/10.1145/2828959.2828963
https://doi.org/10.1145/3459995
https://doi.org/10.3102/0013189X015002004
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1109/ICCSE51940.2021.9569444
https://doi.org/10.1109/ICCSE51940.2021.9569444
https://doi.org/10.1145/1822090.1822151
https://doi.org/10.1145/1822090.1822151
https://doi.org/10.1145/1352322.1352230

316

REFERENCES

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

Elliot Soloway, Jeffrey Bonar, and Kate Ehrlich. “Cognitive Strategies and Loop-
ing Constructs: An Empirical Study”. In: Communications of the ACM 26.11
(Nov. 1983), pp. 853-860. ISSN: 0001-0782. DOI: 10.1145/182.358436.

Juha Sorva. “Misconceptions and the Beginner Programmer”. In: Computer
Science Education : Perspectives on Teaching and Learning in School. Ed. by Sue
Sentance, Erik Barendsen, Nicol R. Howard, and Carsten Schulte. 1st ed. Lon-
don: Bloomsbury Academic, 2023, pp. 259-274. ISBN: 978-1-350-29694-7.

Juha Sorva. “Visual Program Simulation in Introductory Programming Educa-
tion”. PhD thesis. Espoo, Finland: Aalto University, 2012.

GitHub Staff. Octoverse: Al Leads Python to Top Language as the Number of
Global Developers Surges. Oct. 2024. URL: https://github.blog/news-
insights/octoverse/octoverse-2024/ (visited on 07/07/2025).

Guy L. Steele. “Growing a Language”. In: Addendum to the 1998 Proceedings
of the Conference on Object-oriented Programming, Systems, Languages, and Ap-
plications (Addendum). OOPSLA 98 Addendum. New York, NY, USA: Associa-
tion for Computing Machinery, Jan. 1998, 0.01-A1. ISBN: 978-1-58113-286-1.
DOI: 10.1145/346852.346922.

Wayne Stevens, Glenford Myers, and Larry Constantine. “Structured Design”.
In: IBM Systems Journal 13.2 (1974), pp. 115-139. ISSN: 0018-8670. DOI:
10.1147/sj.132.0115.

Filip Strombéck, Pontus Haglund, Aseel Berglund, and Erik Berglund. “The
Progression of Students’ Ability to Work With Scope, Parameter Passing and
Aliasing”. In: Proceedings of the 25th Australasian Computing Education Confer-
ence. Melbourne VIC Australia: ACM, Jan. 2023, pp. 39-48. DOIL: 10. 1145/
3576123.3576128.

Gail M. Sullivan and Richard Feinn. “Using Effect Size—or Why the P Value
Is Not Enough”. In: Journal of Graduate Medical Education 4.3 (Sept. 2012),
pp. 279-282. ISSN: 1949-8349. DOI: 10.4300/JGME-D-12-00156. 1.

Joshua Sunshine, James D. Herbsleb, and Jonathan Aldrich. “Structuring Doc-
umentation to Support State Search: A Laboratory Experiment about Proto-
col Programming”. In: ECOOP 2014 — Object-Oriented Programming. Ed. by
Richard Jones. Berlin, Heidelberg: Springer, 2014, pp. 157-181. ISBN: 978-3-
662-44202-9. DOL: 10.1007/978-3-662-44202-9 7.

Swiss Federal Council. AS 2018 2669 - Verordnung iiber die Anerkennung von
gymnasialen Maturitdtsausweisen. 2018. URL: https://www.fedlex.admin.
ch/eli/oc/2018/387/de (visited on 06/05/2024).

https://doi.org/10.1145/182.358436
https://github.blog/news-insights/octoverse/octoverse-2024/
https://github.blog/news-insights/octoverse/octoverse-2024/
https://doi.org/10.1145/346852.346922
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.1145/3576123.3576128
https://doi.org/10.1145/3576123.3576128
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.1007/978-3-662-44202-9_7
https://www.fedlex.admin.ch/eli/oc/2018/387/de
https://www.fedlex.admin.ch/eli/oc/2018/387/de

317

REFERENCES

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

[261]

Jialiang Tan, Yu Chen, and Shuyin Jiao. Visual Studio Code in Introductory Com-
puter Science Course: An Experience Report. Mar. 2023. arXiv: 2303 . 10174
[cs].URL:http://arxiv.org/abs/2303.10174 (visited on 07/05/2024).

Cynthia Taylor, Jaime Spacco, David P. Bunde, Zack Butler, Heather Bort,
Christopher Lynnly Hovey, Francesco Maiorana, and Thomas Zeume. “Prop-
agating the Adoption of CS Educational Innovations”. In: Proceedings Compan-
ion of the 23rd Annual ACM Conference on Innovation and Technology in Com-
puter Science Education. Larnaca Cyprus: ACM, July 2018, pp. 217-235. ISBN:
978-1-4503-6223-8. DOI: 10.1145/3293881.3295785.

TBPN. Amjad Masad on Replit, Al Agents, and the Death of Traditional Software.
Mar. 2025. URL: https://www . youtube . com/watch?v=TpeRtL2nsCY
(visited on 07/17/2025).

Allison Elliott Tew, Charles Fowler, and Mark Guzdial. “Tracking an Innova-
tion in Introductory CS Education from a Research University to a Two-Year
College”. In: ACM SIGCSE Bulletin 37.1 (Feb. 2005), pp. 416-420. ISSN: 0097-
8418.DOI: 10.1145/1047124.1047481.

The Pyret Crew. The Pyret Programming Language. URL: http://pyret .
org/ (visited on 07/03/2024).

The Python Standard Library. URL: https://docs.python.org/3/library/
index.html (visited on 07/03/2024).

Bruce Thompson. Best Practices in Quantitative Methods. SAGE Publications,
Inc., 2008. ISBN: 978-1-4129-9562-7. DOI: 10.4135/9781412995627.

Nicole Trachsler. “WebTigerJython - A Browser-based Programming IDE for
Education”. In: (2018), 77 p. DOIL: 10 .3929/ETHZ-B-000338593. HDL:
20.500.11850/338593.

Vicki Trowler. Student Engagement Literature Review. York: The Higher Educa-
tion Academy, 2010.

Ethel Tshukudu and Quintin Cutts. “Understanding Conceptual Transfer for
Students Learning New Programming Languages”. In: Proceedings of the 2020
ACM Conference on International Computing Education Research. ICER "20. New
York, NY, USA: Association for Computing Machinery, Aug. 2020, pp. 227-237.
ISBN: 978-1-4503-7092-9. DOI: 10.1145/3372782.3406270.

https://arxiv.org/abs/2303.10174
https://arxiv.org/abs/2303.10174
http://arxiv.org/abs/2303.10174
https://doi.org/10.1145/3293881.3295785
https://www.youtube.com/watch?v=TpeRtL2nsCY
https://doi.org/10.1145/1047124.1047481
http://pyret.org/
http://pyret.org/
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://doi.org/10.4135/9781412995627
https://doi.org/10.3929/ETHZ-B-000338593
http://hdl.handle.net/20.500.11850/338593
https://doi.org/10.1145/3372782.3406270

318

REFERENCES

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

Preston Tunnell Wilson, Kathi Fisler, and Shriram Krishnamurthi. “Evaluating
the Tracing of Recursion in the Substitution Notional Machine”. In: Proceedings
of the 49th ACM Technical Symposium on Computer Science Education. SIGCSE
"18. New York, NY, USA: ACM, 2018, pp. 1023-1028. ISBN: 978-1-4503-5103-
4.DOI: 10.1145/3159450.3159479.

Gias Uddin and Martin P. Robillard. “How API Documentation Fails”. In: IEEE
Software 32.4 (July 2015), pp. 68-75. ISSN: 1937-4194. DOI: 10.1109/MS.
2014 .80.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention Is All You
Need”. In: Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
Dec. 2017, pp. 6000-6010. ISBN: 978-1-5108-6096-4.

Bret Victor. Learnable Programming. Sept. 2012. URL: https://worrydream.
com/LearnableProgramming/ (visited on 02/01/2025).

A. Vihavainen, J. Helminen, and P. Thantola. “How Novices Tackle Their First
Lines of Code in an IDE: Analysis of Programming Session Traces”. In: Pro-
ceedings of the 14th Koli Calling International Conference on Computing Educa-
tion Research. Koli Finland: ACM, Nov. 2014, pp. 109-116. ISBN: 978-1-4503-
3065-7. DOL: 10.1145/2674683.2674692.

Visual Studio Code. URL: https://code.visualstudio.com/ (visited on
07/05/2024).

Paul Voigt and Axel Von Dem Bussche. The EU General Data Protection Regu-
lation (GDPR). Cham: Springer International Publishing, 2017. ISBN: 978-3-
319-57958-0. DOIL: 10.1007/978-3-319-57959-7.

J. von Neumann. “First Draft of a Report on the EDVAC”. In: IEEE Annals of
the History of Computing 15.4 (1993), pp. 27-75. ISSN: 1934-1547. DOI: 10.
1109/85.238389.

Lev S. Vygotsky. Mind in Society: The Development of Higher Psychological Pro-
cesses. Vol. 86. Harvard university press, 1978. (Visited on 07/11/2025).

Christopher Watson and Frederick W.B. Li. “Failure Rates in Introductory Pro-
gramming Revisited”. In: Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education. ITiCSE '14. New York, NY, USA:
Association for Computing Machinery, June 2014, pp. 39-44. ISBN: 978-1-
4503-2833-3. DOI: 10.1145/2591708.2591749.

https://doi.org/10.1145/3159450.3159479
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1109/MS.2014.80
https://worrydream.com/LearnableProgramming/
https://worrydream.com/LearnableProgramming/
https://doi.org/10.1145/2674683.2674692
https://code.visualstudio.com/
https://doi.org/10.1007/978-3-319-57959-7
https://doi.org/10.1109/85.238389
https://doi.org/10.1109/85.238389
https://doi.org/10.1145/2591708.2591749

319

REFERENCES

[272]

[273]

[274]

[275]

[276]

[277]

[278]

[279]

[280]

[281]

WebTigerJython. URL: https://webtigerjython.ethz.ch/ (visited on
07/03/2024).

David Weintrop, Alexandria K. Hansen, Danielle B. Harlow, and Diana Franklin.
“Starting from Scratch: Outcomes of Early Computer Science Learning Expe-
riences and Implications for What Comes Next”. In: Proceedings of the 2018
ACM Conference on International Computing Education Research. Espoo Finland:
ACM, Aug. 2018, pp. 142-150. ISBN: 978-1-4503-5628-2. DOIL: 10 . 1145/
3230977 .3230988.

David Weintrop and Uri Wilensky. “Using Commutative Assessments to Com-
pare Conceptual Understanding in Blocks-based and Text-based Programs”.
In: Proceedings of the Eleventh Annual International Conference on International
Computing Education Research. ICER '15. New York, NY, USA: Association for
Computing Machinery, Aug. 2015, pp. 101-110. ISBN: 978-1-4503-3630-7.
DOI: 10.1145/2787622.2787721.

Robert S. Weiss. Learning from Strangers: The Art and Method of Qualitative
Interview Studies. Simon and Schuster, 1995. (Visited on 06/26/2025).

Richard L. Wexelblat. History of Programming Languages. Academic Press, May
2014. ISBN: 978-1-4832-6616-9.

D. J. Wheeler. “The Use of Sub-Routines in Programmes”. In: Proceedings of the
1952 ACM National Meeting (Pittsburgh) on - ACM °52. Pittsburgh, Pennsylva-
nia: ACM Press, 1952, pp. 235-236. DOI: 10.1145/609784.609816.

Cameron Wilson. “Hour of Code—a Record Year for Computer Science”. In:
ACM Inroads 6.1 (Feb. 2015), pp. 22-22. ISSN: 2153-2184, 2153-2192. DOIL:
10.1145/2723168.

Margaret Wilson. “Six Views of Embodied Cognition”. In: Psychonomic Bulletin
& Review 9.4 (Dec. 2002), pp. 625-636. ISSN: 1069-9384, 1531-5320. DOI:
10.3758/BF03196322.

Jeannette M Wing. “Computational Thinking and Thinking about Computing”.
In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 366.1881 (Oct. 2008), pp. 3717-3725. ISSN: 1364-503X,
1471-2962. DOI: 10.1098/rsta.2008.0118.

Jeannette M. Wing. “Computational Thinking”. In: Communications of the ACM
49.3 (Mar. 2006), pp. 33-35. ISSN: 0001-0782. DOI: 10.1145/1118178.
1118215.

https://webtigerjython.ethz.ch/
https://doi.org/10.1145/3230977.3230988
https://doi.org/10.1145/3230977.3230988
https://doi.org/10.1145/2787622.2787721
https://doi.org/10.1145/609784.609816
https://doi.org/10.1145/2723168
https://doi.org/10.3758/BF03196322
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215

320

REFERENCES

[282]

[283]

[284]

[285]

[286]

[287]

John Wrenn and Shriram Krishnamurthi. “Executable Examples for Program-
ming Problem Comprehension”. In: Proceedings of the 2019 ACM Conference
on International Computing Education Research. ICER "19. New York, NY, USA:
Association for Computing Machinery, July 2019, pp. 131-139. ISBN: 978-1-
4503-6185-9. DOI: 10.1145/3291279.3339416.

Huiping Wu and Shing-On Leung. “Can Likert Scales Be Treated as Interval
Scales?—A Simulation Study”. In: Journal of Social Service Research 43.4 (Aug.
2017), pp. 527-532. ISSN: 0148-8376. DOI: 10 .1080/01488376 . 2017 .
1329775.

Robert K. Yin. Case Study Research: Design and Methods. Fifth edition. Los An-
geles: SAGE, 2014. ISBN: 978-1-4522-4256-9.

Brent Yorgey. Diagrams - Diagrams + Cairo + Gtk + Mouse Picking, Reloaded.
2015. URL: https://diagrams.github.io/blog/2015-04-30-GTK-
coordinates.html (visited on 07/20/2025).

Brent A. Yorgey. “Monoids: Theme and Variations (Functional Pearl)”. In: ACM
SIGPLAN Notices 47.12 (Sept. 2012), pp. 105-116. ISSN: 0362-1340. DOI:
10.1145/2430532.2364520.

Zana Zanko, Monika Mladenovi¢, and Ivica Boljat. “Misconceptions about Vari-
ables at the K-12 Level”. In: Education and Information Technologies 24.2 (Mar.
2019), pp. 1251-1268.ISSN: 1360-2357, 1573-7608. DOI: 10.1007 /510639~
018-9824-1.

https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1080/01488376.2017.1329775
https://doi.org/10.1080/01488376.2017.1329775
https://diagrams.github.io/blog/2015-04-30-GTK-coordinates.html
https://diagrams.github.io/blog/2015-04-30-GTK-coordinates.html
https://doi.org/10.1145/2430532.2364520
https://doi.org/10.1007/s10639-018-9824-1
https://doi.org/10.1007/s10639-018-9824-1

	I Prologue
	Here Is an Introduction to This Thesis
	More and more people are learning to program
	Programming is often taught using mathematics as a domain
	Other domains can be used to teach programming
	A domain is not necessarily a context, which some criticize
	This thesis claims that graphics can be a suitable domain
	This thesis presents six main contributions
	This thesis subscribes to pragmatism and uses multiple research methods
	Parts of this thesis are based on published work
	Several people deserve to be acknowledged for their contributions

	II Teaching Introductory Programming With Graphics
	Teaching Introductory Programming Is Challenging
	Learning to program is difficult for many
	Programming misconceptions abound
	Educators have long searched for the next simpler programming language
	Python is increasingly popular for introductory programming
	But Python is not a simple language
	A sublanguage focused on expressions is a sensible starting point
	Abstraction and decomposition are fundamental in programming
	Language models may raise the importance of abstraction and decomposition
	Models are great at generating code
	Models ace introductory programming tasks
	What remains of programming then?

	We need to engage a diverse population of learners
	Using graphics is a way to engage novices

	There Are Many Approaches to Using Graphics
	The scope is textual programming languages with graphical output
	We review three approaches using the classical example of a house
	Graphics can be drawn using global coordinates on a canvas
	Graphics can be drawn controlling a turtle
	Graphics can be treated as values to compose

	Existing Approaches Have Pitfalls
	Decomposing a problem cleanly is hard
	Global coordinates break independence
	Turtle state also breaks independence
	Local coordinates are prone to misuse

	Learners' engagement should be meaningful
	External graphics may lower motivation
	Rich APIs shift the emphasis from programming to libraries
	Scalable graphics reduce the need for abstraction

	Complexity should be kept under control
	At the beginning, language features should be minimized
	Mutability makes it harder to reason about programs

	III The PyTamaro Approach
	PyTamaro Is a Library Designed to Avoid the Pitfalls
	This is an initial example with PyTamaro
	The design encourages the definition of abstractions early on
	Graphics enable visual problem decomposition
	Visual decomposition starts from basic examples
	There are multiple ways to (de)compose
	A flexible combinator enables (de)composing more elaborate graphics
	Clean decomposition means no unwanted dependencies

	The structure of the graphic informs the structure of the program
	Abstraction arises from similarities and differences
	We can give a name to identical graphics
	We can create a function for similar graphics with few differences
	Functions can then be used to produce animation frames

	PyTamaro can be used to create meaningful graphics
	PyTamaro programs only require a subset of Python, but are not limited to it
	In a sense, PyTamaro is ``functional'' programming
	But compartmentalizing programming into paradigms is misguided

	The PyTamaro approach is not confined to an English API in Python
	The design can be implemented in other programming languages
	PyTamaro is localized for natural languages

	PyTamaro's minimalism is only in service of learning
	Minimal does not mean only one primitive
	Minimal does not mean only one combinator
	Minimal does not mean as few characters as possible

	The minimalism also brings limitations
	Working with a bounding box can be limiting
	A local coordinate system can be reintroduced

	The PyTamaro approach goes beyond the design of a library

	With TamaroCards, Programming Can Be Introduced Unplugged
	Programming can be initially taught unplugged
	Unplugged programming is related to tangible notional machines
	TamaroCards is a notional machine for PyTamaro expressions
	TamaroCards uses physical cards to represent programming constructs
	TamaroCards can be seen as a visual programming language
	The house example can be created with TamaroCards
	Cards also serve as documentation

	Students follow a systematic process from cards to code
	TamaroCards can also help with misconceptions
	Teaching abstraction already starts with TamaroCards
	We piloted a curriculum in a middle school using TamaroCards

	PyTamaro Web Offers Programming Activities with PyTamaro
	The platform was created to show example activities to teachers
	The computational model is based on notebooks, with key differences
	Activities can leverage dedicated features to help learners
	A curriculum is a guided path through activities
	Privacy and pragmatic reasons dictate the platform architecture
	Teachers contribute content using version control
	We used the platform for a self-guided Hour of Code curriculum
	The platform hosts several activities and curricula

	The Toolbox of Functions Promotes Abstraction
	We should move from code clones to code reuse
	Code clones are widespread
	Code clones can be avoided with code reuse
	Environments do not always favor code reuse
	Environments stimulate the use of code snippets
	Environments can offer more advanced templates for code
	Scratch offers to remix projects by duplication
	Multi-file projects can require a complex setup

	Assignments do not always favor code reuse

	The Toolbox of Functions is an approach to promote code reuse
	PyTamaro Web implements the Toolbox of Functions
	A student starts by defining functions normally
	Functions can be added to the Toolbox
	Students can then use functions from their Toolbox
	The Toolbox grows over time
	Students gradually learn to manage their Toolbox

	We collected initial data on students using the Toolbox in PyTamaro Web
	The idea of the Toolbox can be expanded and empirically evaluated

	Judicious Is a Gradual Documentation System for Novices
	We briefly review documentation and introductory programming
	There are a number of different documentation systems
	Javadoc for Java
	Scribble for Racket
	Sphinx for Python
	Pylance for Python

	API documentation for beginners is sometimes ad hoc

	Judicious is a novel pedagogical documentation system
	Judicious includes a diagrammatic representation
	Judicious documents one name at a time
	Judicious presents documentation gradually
	Judicious distinguishes constants from parameter-less functions
	Judicious indicates functions with side effects
	Judicious automatically documents student-defined functions
	Judicious includes usage examples

	PyTamaro's documentation can be fully explored with Judicious
	This is how Judicious compares to existing documentation systems
	Most pedagogical features are unique to Judicious
	Other systems offer certain features not in Judicious

	The effectiveness of Judicious has not been empirically evaluated

	IV Empirical Investigations
	We Studied Transfer, Engagement, and Code-Related Skills
	Evaluations of graphics-based approaches and the challenge of transfer
	Compositional graphics approaches should have potential for transfer
	We used a specific methodology for the randomized controlled experiment
	The procedure included four phases
	We recruited participants from a CS1 course
	We asked participants a pre-survey
	We carefully designed a short teaching intervention
	There is an interplay between pedagogy and library
	This is the content of the four mini-lessons

	Before the post-test, participants had to complete a post-survey
	The post-test consisted of nine questions
	Q1 to Q6 were multiple-choice questions on programming
	Q7 to Q9 featured programming tasks in the graphics domain
	Q7 was a tracing task
	Q8 was a program writing task
	Q9 was a program modification task

	We analyzed the data with different techniques

	These are the results of our experiment
	The pre-survey indicates that most but not all participants were novices
	There were no differences in transfer to programming concepts
	Programming tasks had more diverse results
	There was a large difference on tracing
	Both groups performed well on a simple program writing task
	Both groups also performed well on a simple program modifying task

	The post-survey reports engaged students, with some differences

	The experimental results need to be discussed
	Student engagement was high
	Differences between groups were scarce, with one exception
	The PyTamaro group did better on their tracing task
	Other differences were largely absent

	The multiple-choice questions were designed with transfer in mind
	We aimed to stay clear from ``Teaching to the Test''
	We studied transfer to isomorphic programs
	Transfer, even to isomorphic tasks, can fail

	There are threats to the validity of our study
	Students' prior knowledge affects the results
	The short study duration limits what can be observed
	There are threats related to data collection and the instrument
	Generalization is limited
	Students may have some response biases
	We have an authorship bias as we are PyTamaro's authors

	To conclude, we did not find evidence of better transfer with PyTamaro

	We Conducted a Case Study With High School Teachers
	Swiss teachers adopted PyTamaro in different contexts
	The pedagogy and the library are interconnected
	Prior work investigated when and how educators adopt innovations
	We conducted a case study on how teachers adopt PyTamaro
	Five teachers represent our five cases
	We investigated why teachers adopt PyTamaro and how they translate the approach in their teaching materials
	We collected two different sources of evidence
	Teaching materials serve as documentation
	Individual interviews are targeted and insightful, but suffer from biases
	Our interviews also included a small assessment part

	Multiple sources of evidence enable triangulation
	We followed a protocol for the interviews
	Some questions focused on the teacher
	Other questions investigated the choice of graphics as a domain and PyTamaro
	We established a template for questions about teaching materials
	Some questions discussed the students' experience

	The study suffers from a clear authorship bias, which we tried to mitigate
	We analyzed each case, and across the cases

	The case of Ada
	This is Ada's context
	She has modest programming experience
	She has two colleagues with extensive experience
	She mainly teaches in the 10th grade
	She gave sensible feedback to two PyTamaro programs

	On the choice of adopting PyTamaro
	For her, the training program was essential to develop materials

	On the teaching materials
	Here is an overview
	Function definition is introduced with fading examples
	Offline exercises offer practice for the Toolbox of Functions
	Decomposition was also discussed in older materials with turtle graphics
	Both constants and mutable variables are used
	A ``Table of Values'' is used to explain repetition with loops
	She tends to avoid nested expressions
	Some of her materials include method calls
	She does not use TamaroCards
	Her activities on PyTamaro Web end with explicit learning goals

	On the student experience
	Student attitude varies more individually than by their major
	Students find listing explicit names to import demanding
	Students get creative in the final project with PyTamaro
	Students can debug PyTamaro programs without a debugger

	The case of Barbara
	This is Barbara's context
	She teaches mathematics and is critical about her programming knowledge
	She teaches in the 9th grade to students from different majors
	She mostly focused on style when giving feedback to two PyTamaro programs

	On the choice of adopting PyTamaro
	The lack of a textbook made her hesitant

	On the teaching materials
	Here is an overview
	TamaroCards are used from the beginning
	Students mostly use the Toolbox on the web platform
	A transition from constant to variables happens when introducing loops
	There are issues with transfer on loops and lists
	The PyTamaro curriculum focuses on concepts, but turtle requires less syntax

	On the student experience
	Some students still struggle with syntax, despite TamaroCards
	Projects were affected by language models and a restricted set of activities

	The case of Charles
	This is Charles's context
	He is a biology teacher with some programming experience
	He uses PyTamaro in the 9th grade
	He gave good feedback on two PyTamaro programs

	On the choice of adopting PyTamaro
	The graphic domain is engaging for many students

	On the teaching materials
	Here is an overview
	He uses TamaroCards and explains how to turn programs into Python
	He uses a memory diagram to explain variables
	He explains two different ways to repeat
	He does not use the web platform but still adopts the Toolbox approach
	He uses and praises the Judicious documentation system
	PyTamaro materials emphasize functions but ignore interactivity
	Complex features are shown to students at the beginning

	On the student experience
	Students feel unconstrained in PyTamaro-based projects
	Game programming in the 10th grade without PyTamaro requires complex code
	Students do not always see why one should define functions
	Type annotations are perceived as comments

	The case of Dorothy
	This is Dorothy's context
	She recently learned programming in the retraining program
	She uses PyTamaro in the 9th grade with uninterested students
	With help, she managed to give feedback to two PyTamaro programs

	On the choice of adopting PyTamaro
	She saw the value of PyTamaro during the training program

	On the teaching materials
	Here is an overview
	Programming concepts are introduced using multiple domains
	Some function definitions are more subprograms than abstractions of expressions
	She uses the Toolbox approach on the web platform, but not offline
	She uses TamaroCards to introduce PyTamaro functions
	She uses type annotations extensively
	Variables are sometimes mutable and sometimes immutable
	Her activities favor shallowly nested expressions
	She motivates some forms of abstractions with similarities and differences
	Her materials introduce function definition earlier than her colleagues'
	Errors are discussed early on

	On the student experience
	Students use functions easily but need help to define them
	Students get creative in projects and work around the limitations

	The case of Emil
	This is Emil's background
	He is an experienced biology teacher who recently learned programming
	He teaches with PyTamaro to students in the 9th grade
	He gave quick and good feedback on two PyTamaro programs

	On the choice of adopting PyTamaro
	PyTamaro enables him to go beyond turtle graphics

	On the teaching materials
	Here is an overview
	A number of unplugged activities use TamaroCards
	Function definition comes early in the curriculum
	Decomposition is only discussed using the graphics domain
	There is no project due to limited classroom time
	All examples use the German API of PyTamaro
	Errors are presented at the very beginning

	On the student experience
	Students exhibit creativity with PyTamaro
	Students embraced the Toolbox approach
	Students can generally deal with nested expression
	The neutral element for graphics is a challenge
	Faster students can explore activities on the web platform

	We synthesized findings across cases
	On the choice of adopting PyTamaro
	Graphics is seen as a motivating domain, and PyTamaro as a novel approach to graphics
	Dedicated time during training was essential to develop new teaching materials

	On the teaching materials
	Teachers use graphics to introduce most programming concepts
	Defining functions is emphasized early on
	The Toolbox approach is widely adopted
	Decomposition is mostly discussed in the domain of graphics
	Teachers struggle to reconcile the ideas of (im)mutable variables and constants

	On the student experience
	Students are challenged by defining functions, but not overwhelmed
	Students do not deem PyTamaro too restrictive for their creativity

	V Epilogue
	Here Is a Conclusive Look at This Thesis
	The PyTamaro approach has potential, but there are challenges
	Our empirical investigations have important limitations
	Thanks to its flexibility, the approach is used in different contexts

	What Is the Future of PyTamaro?
	More empirical studies can be conducted
	The PyTamaro approach should still grow
	Learners should eventually write interactive programs
	PyTamaro should offer more support for testing
	A graphical REPL would emphasize expressions
	Learners will transition beyond introductory programming in Python

	VI Appendices
	Appendix to the Randomized Controlled Experiment
	Pre-Survey
	Teaching Intervention
	Mini-Lesson 1 (of 4)
	Mini-Lesson 2 (of 4)
	Mini-Lesson 3 (of 4)
	Mini-Lesson 4 (of 4)

	Post-Survey
	Post-Test Multiple-Choice Questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6

	Appendix to the Case Study
	Additional dedicated questions for Ada
	Additional dedicated questions for Barbara
	Additional dedicated questions for Charles
	Additional dedicated questions for Dorothy
	Additional dedicated questions for Emil

	References

