
A Curated Inventory of Programming Language Misconceptions
Luca Chiodini

luca.chiodini@usi.ch
Software Institute, Università della

Svizzera italiana
Lugano, Switzerland

Igor Moreno Santos
igor.moreno.santos@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Andrea Gallidabino
andrea.gallidabino@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Anya Tafliovich
anya@cs.utoronto.ca
University of Toronto
Scarborough, Canada

André L. Santos
andre.santos@iscte-iul.pt

Instituto Universitário de Lisboa
(ISCTE–IUL)

Lisbon, Portugal

Matthias Hauswirth
matthias.hauswirth@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Abstract
Knowledge about misconceptions is an important element of ped-
agogical content knowledge. The computing education research
community collected a large body of research on misconceptions,
using a diverse set of definitions and approaches. Inspired by this
prior work, we present an actionable definition of misconceptions,
focused on the area most commonly studied: programming and
programming languages.We then introduce an organizational struc-
ture for collections of programming language misconceptions. We
study how existing collections fit our organization, and we present
a curated inventory of programming language misconceptions
that aims to follow our definition and structure. Our inventory
goes beyond traditional programming misconception collections.
It connects misconceptions to the authoritative specifications of
languages, to places they may be triggered in textbooks, to research
papers that discuss them, and it provides support for integrating
programming language misconceptions into educational platforms.

CCS Concepts
• Social and professional topics → Computer science educa-
tion; • Software and its engineering → General programming
languages.

Keywords
programming; programming languages; misconceptions; pedagogy

ACM Reference Format:
Luca Chiodini, Igor Moreno Santos, Andrea Gallidabino, Anya Tafliovich,
André L. Santos, and Matthias Hauswirth. 2021. A Curated Inventory of
Programming Language Misconceptions. In 26th ACM Conference on Inno-
vation and Technology in Computer Science Education V. 1 (ITiCSE 2021), June
26–July 1, 2021, Virtual Event, Germany. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3430665.3456343

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE 2021, June 26–July 1, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8214-4/21/06. . . $15.00
https://doi.org/10.1145/3430665.3456343

1 Introduction
Knowledge about misconceptions is a key element of pedagogical
content knowledge [31] that affects student learning1 [29]. “Com-
puting educators are often baffled by the misconceptions that their
CS1 students hold. We need to understand these misconceptions
more clearly in order to help students form correct conceptions.”
These are the opening sentences from the top-ranked paper receiv-
ing the SIGCSE “Top Ten Symposium Papers of All Time Award”2,
Kaczmarczyk et al.’s “Identifying student misconceptions of pro-
gramming” [16].

However, much of the work on programming misconceptions is
“locked away” in academic papers targeted at researchers and “the
dissemination of approaches and tools has been limited” [27]. Given
the agreement on the importance and the positive effect teacher
knowledge about misconceptions can have on teaching, how then
can educators easily find information about misconceptions related
to the specific material they teach?

This paper solves that problem for a focused subset of miscon-
ceptions, which we define as programming language misconceptions
(Section 2). It bridges the gap between (1) misconceptions research,
(2) programming language theory, and (3) educational practice, with
the goal of making misconceptions easily accessible to educators. The
paper introduces a form and structure for presenting misconcep-
tions (Section 3), presents progmiscon.org, a curated inventory of
198 misconceptions following that organization (Section 4), and
evaluates the definition and the inventory by comparing it to two
well-known existing collections of programming misconceptions
(Section 5) by Sorva [37] and by Lewis [19].

2 Programming Language Misconceptions
There is an extensive body of research on misconceptions of novice
programmers. However, few papers define explicitly what they
mean by misconception. When studies use the word misconception
without an explicit definition (e.g., [4, 13, 14, 28]), they may implic-
itly assume the meaning from science education, where misconcep-
tions are usually defined as “flawed ideas held by students, often

1Sadler and Sonnert [29] found that “teachers who could identify these misconceptions
had larger classroom achievement gains, much larger than if teachers knew only the
correct answers”.
2https://www.acm.org/media-center/2019/march/sigcse-top-10-papers

https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/3430665.3456343
https://www.acm.org/media-center/2019/march/sigcse-top-10-papers

strongly, which conflict with commonly accepted scientific con-
sensus” [27, 34]. Some works instead contain an explicit definition.
Smith et al. [34], analyzing research in science and mathematics
education, characterize misconceptions as “student conceptions
that produce a systematic pattern of errors”. In a context closer to
ours, Sorva [38] defines them as “understandings that are deficient
or inadequate for many practical programming contexts”. In an
attempt to further delimit the space, Qian and Lehman [27] add
that “misconceptions, per se, are probably best defined as errors in
conceptual understanding”. Despite progressive refinements, these
definitions are still relatively broad.

In the context of programming education, there is an opportu-
nity for a more focused and actionable definition. In his seminal
paper, Du Boulay [7] groups the difficulties novices have when
learning to program into five areas, which could be summarized as
orientation (general problems of orientation in understanding what
programming means and what one can achieve with it); semantics
(difficulties with understanding “the properties of the machine one
is learning to control, the notional machine”); syntax (“problems as-
sociated with the notation of the various formal languages that have
to be learned”); strategies (difficulties of acquiring standard struc-
tures or plans used to achieve small-scale goals); and pragmatics
(“how to specify, develop, test, and debug a program”). Subsequent
work [23, 27] followed a similar but slightly more focused partition-
ing of the space of programming knowledge: syntactic knowledge,
conceptual (semantic) knowledge, and strategic knowledge. In this
paper we narrow the focus even further, by excluding strategic
knowledge—knowledge about the programming process. We focus
on syntactic and semantic knowledge—the kind of knowledge cap-
tured in the specification of a programming language (PL). We call
the corresponding misconceptions programming language miscon-
ceptions:

Definition 2.1. Aprogramming languagemisconception is a state-
ment that can be disproved by reasoning entirely based on the
syntax and/or semantics of a programming language.

Our definition is centered around statements. Such statements
are related to ideas from the fragmented side of conceptual change
research: p-prims in knowledge-in-pieces [5] (e.g., in physics, “in-
creased effort begets greater results”) and the idea of facets [21, 24]
(e.g., again in physics, “horizontal movement makes a falling object
fall more slowly”). Like facets, our statements “describe students’
thinking as it is seen or heard in the classroom”, and they are “indi-
vidual pieces or constructions of a few pieces of knowledge” [24].

2.1 An Actionable Definition
A definition is actionable if it has practical value. So what is the
practical value of the above definition? First, our definition allows
us to decide with some certainty whether something is or is not
a programming language misconception. This means that it en-
ables researchers and educators to categorize student difficulties as
programming language misconceptions.

What makes our definition actionable? PLs are explicitly and
completely specified either in the form of a language specification,
which can be formal or not, or in the form of their implementation.
These specifications represent an unambiguous “ground truth”.
Thus, programming language misconceptions have a big advantage:

they allow us to check the correctness of a conception by referring
to the specification of the corresponding PL.

For example, according to our definition, the following state-
ments are not programming language misconceptions:

• “JavaScript is better than Java”—does not involve language
syntax or semantics.

• “Garbage collection slows down program execution”—cannot
be disproved solely based on the language syntax and se-
mantics.

• “Assembly programs are longer than equivalent high-level
programs”—cannot be disproved solely based on the lan-
guage syntax and semantics.

On the other hand, the following statements are programming
language misconceptions:

• “In Java, an object cannot access private members of any
other object.” (PrivateFromOtherInstance).

• “In JavaScript, objects are assigned by value.”
(AssignmentCopiesObject).

• “In Python, expressions must consist of more than one piece”
(NoAtomicExpression).

2.2 Programming Language Dependence
As the examples in the previous section show, a programming
language misconception is related to a specific PL. Some miscon-
ceptions are very specific to a given language, or even a given
version of the language. Other misconceptions exist across multiple
language versions (e.g., Java before and after version 8), multiple
related languages (e.g., C and C++), or even across languages from
different paradigms (e.g., functional and imperative).

If misconceptions about syntax and semantics are not tied to PLs,
one often cannot conclude that certain conceptions are wrong, even
for relatively simple ones. Consider the statement: “The operator
&& returns the logical conjunction of its operands”. This statement
is correct in many PLs (among which Java and JavaScript), but it
is wrong in Python (the syntax is invalid). Even if one targets a
common syntax, the semantics of different languages can lead to
different results. For example, in Python the expression op1 ==
op2 == op3 is equivalent to the semantics students are used to
from math: it means (op1 == op2) AND (op2 == op3). In many
other PLs, including Java and JavaScript, that expression has an
entirely different semantics: it evaluates as (op1 == op2) == op3.

3 Organizing a Collection of Misconceptions
An actionable definition allows us to catalog misconceptions. How-
ever, what information about programming language misconcep-
tions should our inventory contain to support its purpose to turn
misconceptions into learning opportunities? We split this discussion
into aspects of form (of an individual misconception description)
and structure (of the overall collection).

3.1 Form of a Misconception
The core of our misconception descriptions is based on the idea
of a refutation text, an approach to induce conceptual change with
a decades long history in science education [41]. It deliberately
juxtaposes the incorrect conception (the misconception statement,

Figure 1: Excerpt of a Misconception Page

in red at the top in an extended form and also in red below the
image) with an explanation of the correct conception (in green
below the image). We present each misconception on its own web
page (see Figure 1) and surround the refutation text core with
pedagogically relevant information and information that connects
the misconception to coherent larger structures:

• Name - Inspired by design patterns, we give each miscon-
ception a unique, concise, meaningful, and memorable name (e.g.,
AddMemberAtRuntime, FunctionsMustBeNamed).

• Statement - Each misconception is represented as a short state-
ment. This is the statement that can be disproved by reasoning
based on the syntax and/or semantics of the related PL as men-
tioned in Definition 2.1.

• Description - The description elaborates on the statement of
a misconception with a longer paragraph that may include short
inline snippets of code or examples. Instructors can use this text to
better understand the scope of a misconception. Both the shorter
statement and the longer description represent the wrong concep-
tion: they violate in some way the associated PL’s syntax and/or
semantics.

• Image - The image captures the essential aspects of the miscon-
ception. It visually juxtaposes the correct and incorrect conceptions.
The image is a visual equivalent to a “refutation text” [41] and is
somewhat similar to a “concept cartoon” [18], two ideas from sci-
ence education that have been used to induce conceptual change.

• Correction - For each misconception we provide a description
of the corresponding correct conception. Corrections can include
textual explanations, diagrams and notional machine representa-
tions, or virtual demonstrations, which teachers can re-use and
present in their lessons. The virtual demonstrations are examples

of executable snippets of code which allow the reader to test the
incorrect and correct conceptions on the spot.

• Symptoms - Misconceptions include a description of the symp-
toms one can expect students holding that misconception to exhibit
(e.g., code smells or erroneous snippets of code observed in stu-
dents’ solutions, which can point to the misconception). This helps
teachers to identify more easily whether their students might have
this misconception.

• Observation Videos - In addition to textual descriptions of
symptoms, a small number of misconceptions also include videos
of student performances that exhibit that misconception. These
videos were collected in an observational study that investigates
conceptual change in learning to program.

• Origins - Where available, we describe where a given mis-
conception might have originated from. When we find a given
educational intervention, a specific description, example, or dia-
gram that is useful to instill a certain misconception, we capture
that information. Being aware of possible origins can help teachers
to address potential misconceptions right at the source.

• Value - Misconceptions can be very valuable. They are more
than just errors in conceptual understanding. Often students hold
conceptions that may be incorrect in a given PL, but that would
reasonably hold in a different (existing or potential) language. More-
over, sometimes a misconception involves elements that a teacher
can productively use as seeds to grow additional conceptual under-
standing.

• Specification Sections - By definition each of our misconcep-
tions is specific to a PL. Exploiting the availability of authoritative
PL specifications which describe their syntax and semantics, we di-
rectly point to the pertinent sections. This provides the background
and context that allows reasoning about the misconception.

• Textbook Sections - Misconceptions refer to specific sections
of well-known programming textbooks, where students learning
to program might first be exposed to them. This allows teachers
who use a given textbook to easily predict which misconceptions
they should expect when teaching a specific chapter of their book.

• Related Misconceptions - Misconceptions often are related. For
example ArraysGrow is to arrays what AddMemberAtRuntime
is to objects. Our inventory captures these relationships and makes
it easy to navigate among them. These connections create a net-
work of relationships between all the misconception of a PL, which
enables the exploration of the conceptual space.

• In Other PLs - Each captured misconception is described for
a specific PL. However, there are many similarities between PLs,
and thus a given misconception may apply similarly to multiple
languages (e.g., we captured ThisAssignable both in Java and
JavaScript). To enable this transfer between languages, we use the
same name for equivalent misconceptions in different languages,
and we provide links to navigate between them.

• Research Papers - Where possible we back our misconceptions
with references to the existing research literature, extending the
breadth and depth of the available evidence.

• Explanation Video - A misconception can be accompanied
by a short explanation video. Such videos provide a modality for
learning about the misconception that can resonate with teachers
or students used to finding information in online videos.

• Concepts - Each misconception is connected to a set of well-
known programming language concepts. These are the concepts
the misconception’s statement relates to.

3.2 Structure of the Collection
Theories of conceptual change like knowledge-in-pieces [5] and
facets [21] show that conceptions do not exist in isolation. Instead,
they are related to each other in rich structures. progmiscon.org
structures the space of misconceptions by connecting misconcep-
tions by concept, by programming language, by language spec-
ification section, and by textbook section. Moreover, it directly
connects misconceptions with commonalities, and it connects mis-
conceptions to equivalent misconceptions in other PLs. The web
site allows navigating these connections and enumerating miscon-
ceptions based on the above properties. Developers of educational
resources can go further, and use our static API to retrieve an up-
to-date machine-readable list of misconceptions.

4 Content
The content of our inventory comes from observing students, their
programming activities, and the artifacts they produced, in different
programming courses over more than a decade. An initial set of
misconceptions was collected in an undergraduate object-oriented
programming course over 15 years. More recently, the content
has been augmented with information collected in a graduate-level
advanced programming course (in Python, Java, and JavaScript) and
with two micro-genetic studies by the first author, who conducted,
video-taped, and analyzed 38 hours of mastery checks with student
volunteers in two different courses, in Java and JavaScript.

All our collection efforts placed a strong emphasis on analyzing
activities instead of artifacts. We identified misconceptions in mas-
tery check sessions [12, 42], in oral exams, and in video observations
of students in different programming courses.

We also placed emphasis on analyzing students’ statements about
programming, instead of focusing on students’ programs. Specifi-
cally, we identified students’ recall statements [11] in courses using
flipped-classroom pedagogies, where students had to read textbook
sections before class, and submitted written recall statements as
evidence of their preparation.

progmiscon.org currently contains misconceptions in three dif-
ferent languages: Java, JavaScript, and Python. Its structure easily
accommodates other languages. Before being published, miscon-
ceptions go through a draft state while we enrich them with the
characteristics presented in Section 3.

5 Evaluation
Previous sections proposed a definition of programming language
misconception, described a way to organize a collection of such mis-
conceptions, and introduced progmiscon.org, an inventory based
on the above definition and organization. We now compare our in-
ventory to prior published collections both in terms of the definition
as well as the organization.

Table 1: Applying our definition of programming language
misconception to misconceptions from different sources.

Not PL misconception

Source It
em

s

PL
m
is
co

nc
ep

ti
on

Te
ac
hi
ng

su
gg

es
tio

n

N
ot

ab
ou

tp
ro
gr
am

m
.

A
bo

ut
N
M

Sy
m
pt
om

D
iffi

cu
lty

A
bo

ut
a
lib

ra
ry

St
ra
te
gi
c
kn

ow
le
dg

e

O
th
er

U
nk

no
w
n

Sorva 162 114 0 2 1 2 32 0 1 0 10
Lewis 126 26 36 4 0 14 32 9 1 3 1
(Our) 198 175 0 0 12 0 0 7 4 0 0

5.1 Evaluation of the Definition
Our definition of programming languagemisconceptions is strongly
focused. If the definition rules out most of the captured miscon-
ceptions, then it might be of limited use. We thus now evaluate
which fraction of collected misconceptions fit our definition, and
we characterize those misconceptions that do not fit our definition.

For this purpose we analyzed, besides our own progmiscon.org
inventory, the two largest collections of misconceptions we are
aware of: (1) Sorva’s catalog [37] of 162 misconceptions, which
were collected in his large survey of published research papers
on the topic, and (2) Lewis’s CS teaching tips web site [19] which
contains over 120 tips tagged as “content misconceptions”.

The definition ties a misconception to a particular program-
ming language; thus, even though a programming language was
not always clearly stated for each misconception, we inferred the
programming language of each misconception whenever possible.

Two authors classified independently each misconception deter-
mining whether it fulfills the definition or not and if it not, choosing
1 out of 8 predetermined reasons that explain why that was the
case. The overall accuracy of the rating across the three sources and
the ten categories was 81%, and the corresponding Cohen’s kappa
coefficient was 𝜅 = 0.66, indicating “substantial agreement”3.

The two authors then discussed the differences and arrived at
an agreed upon classification summarized in Table 1. Column Items
shows the total number of misconceptions in each repository. Col-
umn PL misconception shows the number of misconceptions that
fulfill our definition of programming language misconception. The
columns under Not PL misconception show how many do not fulfill
our definition, with each column underneath showing the reason
for not fulfilling it. Column Unknown shows the number of mis-
conceptions that were ambiguous or whose meaning we could not
otherwise determine. The reasons for a misconception to not fulfill
the definition were:

3Note that in this case, since most of the data has been classified as “PL misconception”,
it applies the remark by Kaijanaho: “If the coders are extremely (but not perfectly)
accurate, but some values are much rarer than others, then the value of𝜅 is low despite
the coders’ accuracy” [17].

• Teaching suggestion - Statements like “be explicit about what
direction references point when teaching about objects and refer-
ences”, found in Lewis’ list, constitute valuable teaching suggestions,
but do not fulfill the requirements imposed by our definition.

• Not about programming - Some statements refer to activities
around programming (e.g., “Students have difficulty understanding
how to share App Inventor projects between different computers”),
but are not about programming itself.

• About notional machine - Some misconceptions are about no-
tional machines, as is the case with the Java misconception Ze-
roInEdges (“A control-flow graph node can have zero incoming
edges”). These do not constitute a programming language miscon-
ception because they are not about a PL.

• Difficulty - Statements about students’ difficulties, although
valuable teaching information, are also not programming language
misconceptions according to our definition. In Sorva’s list an exam-
ple is “Difficulties understanding the invocation of a method from
another method”.

• Symptom - Some statements describe something students do
rather than a belief they have about the syntax or semantics of
a language. They are not themselves misconceptions but may be
symptoms of a misconception, which would require further inves-
tigation to determine. Sometimes these symptoms are errors the
students make while programming. For example, an off-by-1 error,
described in Lewis’ list, could indicate that the student believes
arrays are indexed starting from 1, which would be a programming
language misconception, but the error itself is not.

• About a library - Our definition of programming language
misconception restricts the scope to the syntax or semantics of a PL.
Thismeans that awrong belief about the semantics of a library is out
of scope. The statement “println(String) prints a newline character
followed by the given String” (misconception PrintNewLineFirst),
from progmiscon.org, is a statement about the semantics of a library,
not the semantics of a programming language (Java).

• Strategic knowledge - Some statements refer not to knowledge
about a programming language but to strategic knowledge about
programming in general. For example, Sorva’s “A set (such as “team”
or “the species of birds”) cannot be a class”, which refers to an issue
about program design.

• Other - This category includes statements that cannot other-
wise be disproved by reasoning about syntax and semantics of a
language. For example, “Students may write code in HTML and
CSS that contains many errors yet still renders correctly, leaving
them with faulty understandings of concepts and acceptable code”,
from Lewis’ list, describes a problematic behavior of browsers that
could be the origin of misconceptions for students.

Analyzing Sorva’s list of misconceptions, we see that 70% of mis-
conceptions fulfill our definition, demonstrating that our definition
captures a significant fraction of the space of misconceptions docu-
mented by the community. Moreover, we see that most of the items
that are not programming language misconceptions are actually
statements of student difficulties. As the last row of Table 1 shows,
our own progmiscon.org inventory also contained some miscon-
ceptions that violate our own definition. Thanks to this analysis,
we can now improve our collection.

5.2 Evaluation of the Organization
Section 3 described the form and structure of progmiscon.org, that
is, how our inventory represents programming language miscon-
ceptions. To evaluate that, we compared our form for a miscon-
ception with the one used in prior work. We considered all the
sources referenced in Sorva’s catalog of misconceptions (Appen-
dix A of [37]), excluding the studies that describe misconceptions
only tangentially because they have a different focus (e.g., mental
models, designing programs) or are not published work in English.
To also capture more recent publications, we added all the papers
referenced in [27] in the two sections that describe difficulties in
syntactic and conceptual knowledge, and we searched for papers
targeting misconceptions published at two of the main Computer
Science Education research conferences (ITiCSE and ICER), ending
up with 24 references.

Table 2 summarises our attempt to compare such body of lit-
erature with our own inventory across every aspect described in
Section 3, with the following modifications. We grouped under
Statement (the central sentence that describes the misconception)
Description and Image, which we use to enrich it. The column Ob-
servations is an abstraction which accommodates our observational
videos with students and textual excerpts reported in prior work.

Table 2 is the result of two authors independently assessing the
form of the misconceptions described in the references. While the
agreement was substantial (79%4), three characteristics have been
a source of differences worth discussing.

One rater considered Research papers to be partially present
when, even without a misconception being directly connected to a
reference, it is possible to establish the link betweenmisconceptions
and the related work. Those modifications have been integrated in
the table.

Name also allows room for differences in interpretation, as au-
thors have employed different techniques to give unique identifiers
to misconceptions. Some of them assign incremental numeric val-
ues [10, 28], while others use a combination of letters and numbers
to group them by topic [3, 16]. Most of the references, though, do
not use meaningful and memorable names like the ones we propose.

The third source of disagreement has been on Related miscon-
ceptions. Some works indeed present misconceptions in groups
(often divided on the basis of concepts, topics or themes) and one
rater considered this to be a possible indirect way to link to related
misconceptions. It is certainly true that being able to navigate mis-
conceptions via concepts is a desirable feature, that is also offered
by progmiscon.org, but we argue that direct links among miscon-
ceptions can be even more powerful, as they can establish different
kinds of relationships.

Although the characteristics we include in progmiscon.org are
not novel, this evaluation shows that they have been reported in a
relatively sparse manner. Our inventory stands out for tying each
misconception to the relevant section of the language specifica-
tion of the corresponding programming language, and for being
centered around the idea of a refutation text (both in textual and

4We considered a disagreement of one point when one rater marked “present” and the
other one “absent”, zero points when there was a match, and half point in the remaining
cases. We excluded from the computation of the agreement five columns (Statement,
Concepts, PL Specification, Textbooks, and Symptoms) in which the characteristic was
marked in almost all or almost no papers.

Table 2: Comparison with the form of misconceptions in literature. : present (at least implicitly), G#: partially present

Authors Year N
am

e

St
at
em

en
t

C
or
re
ct
io
n

C
on

ce
pt
s

PL
Sp

ec
.

Pa
pe

rs

Te
xt
bo

ok
s

R
el
. M

is
co
n.

In
ot
he

r
PL

s

Sy
m
pt
om

s

O
bs
er
va

ti
on

s

O
ri
gi
ns

V
al
ue

Bayman and Mayer [2] 1983 G# G# G#
du Boulay [7] 1986 G# G#
Pea [25] 1986 G# G#
Putnam et al. [26] 1986 G#
Sleeman et al. [33] 1986 G# G#
Fleury [9] 1991
Holland et al. [13] 1997 G# G# G#
Madison and Gifford [22] 1997 G#
Fleury [10] 2000 G#
Hristova et al. [14] 2003 G#
Eckerdal and Thuné [8] 2005 G# G#
Jackson et al. [15] 2005 G#
Ragonis and Ben-Ari [28] 2005 G# G# G#
Teif and Hazzan [40] 2006 G# G#
Doukakis et al. [6] 2007 G#
Ma [20] 2007
Sorva [35] 2007 G#
Sajaniemi et al. [30] 2008
Sorva [36] 2008 G#
Kaczmarczyk et al. [16] 2010 G#
Sirkia and Sorva [32] 2012
Altadmri et al. [1] 2015 G# G#
Swidan et al. [39] 2018 G#
Caceffo et al. [3] 2019 G# G#
progmiscon.org (our work) 2021 G# G# G# G# G# G# G#

visual form). Moreover, our inventory includes those characteristics
we believe are most valuable for educators: connection with chap-
ters of textbooks (Textbooks), possible sources (Origins), and how
misconceptions can be employed during teaching practice (Value).

6 Conclusions
We propose a definition of programming language misconception,
describe a way to organize a collection of such misconceptions, and
introduce progmiscon.org, an inventory based on the above defini-
tion and organization. Our definition focuses on misconceptions
about PL syntax and semantics. We do believe that the difficul-
ties students have with acquiring pragmatics and strategies are
important as well. However, definitions broader than ours make it
more difficult to clearly delineate the boundary between miscon-
ceptions and difficulties in general. As Sorva states in introducing
his unified collection of misconceptions, such a broad body ends
up being “a list of not only apples and oranges, but also of toma-
toes and the odd dried plum.” [37] Our more focused definition
provides a solid foundation for deciding whether or not an issue
represents a programming language misconception. Moreover, our
definition’s tight focus on language syntax and semantics enables
the unambiguous connection of each misconception to the under-
lying conceptual structures of the PL, and the definitions in the

authoritative language specification. In cases where these specifi-
cations are formalized, this connection paves the way for future
work on automatic misconception detection by relating student
statements to formal specifications of the actual languages.

progmiscon.org is the result of several years of effort collecting,
organizing, and documenting programming language misconcep-
tions, including two semester-long video-recorded observational
studies targeting Java and JavaScript. It is a living inventory that
continues to evolve along several dimensions. We plan to add fur-
ther evidence and observations of misconceptions encountered
while learning to program and references to studies carried out by
researchers in the area. With help from the community, we hope
to expand progmiscon.org with misconceptions across a richer set
of PLs, possibly leveraging attempts to generalize misconceptions
across PLs [3] and considering languages targeted at novices such
as Scratch [39]. Ultimately, we hope that progmiscon.org will help
to turn misconceptions into learning opportunities.

Acknowledgments
This work was partially funded by the Swiss National Science Foun-
dation project 200021_184689. We are grateful to Andrea Adamoli
for his assistance and contributions to progmiscon.org.

References
[1] Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million Compilations: Inves-

tigating Novice Programming Mistakes in Large-Scale Student Data. In Pro-
ceedings of the 46th ACM Technical Symposium on Computer Science Education
(SIGCSE ’15). Association for ComputingMachinery, New York, NY, USA, 522–527.
https://doi.org/10.1145/2676723.2677258

[2] Piraye Bayman and Richard E. Mayer. 1983. A Diagnosis of Beginning Program-
mers’ Misconceptions of BASIC Programming Statements. Commun. ACM 26, 9
(Sept. 1983), 677–679. https://doi.org/10.1145/358172.358408

[3] Ricardo Caceffo, Pablo Frank-Bolton, Renan Souza, and Rodolfo Azevedo. 2019.
Identifying and Validating Java Misconceptions Toward a CS1 Concept Inventory.
In Proceedings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education. ACM, Aberdeen Scotland Uk, 23–29. https://doi.
org/10.1145/3304221.3319771

[4] Françoise Détienne. 1997. Assessing the Cognitive Consequences of the Object-
Oriented Approach: A Survey of Empirical Research on Object-Oriented Design
by Individuals and Teams. Interacting with Computers 9, 1 (Aug. 1997), 47–72.
https://doi.org/10.1016/S0953-5438(97)00006-4

[5] Andrea A. diSessa. 2018. A Friendly Introduction to “Knowledge in Pieces”: Mod-
eling Types of Knowledge and Their Roles in Learning. In Invited Lectures from
the 13th International Congress on Mathematical Education (ICME-13 Monographs),
Gabriele Kaiser, Helen Forgasz, Mellony Graven, Alain Kuzniak, Elaine Simmt,
and Binyan Xu (Eds.). Springer International Publishing, 65–84.

[6] Dimitrios Doukakis, Maria Grigoriadou, and Grammatiki Tsaganou. 2007. Under-
standing the Programming Variable Concept with Animated Interactive Analo-
gies. In Proceedings of the The 8th Hellenic European Research on Computer Mathe-
matics & Its Applications Conference (HERCMA’07). Economical University, Athens,
Greece.

[7] Benedict Du Boulay. 1986. Some Difficulties of Learning to Program. Journal of
Educational Computing Research 2, 1 (Feb. 1986), 57–73. https://doi.org/10.2190/
3LFX-9RRF-67T8-UVK9 arXiv:https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

[8] Anna Eckerdal and Michael Thuné. 2005. Novice Java Programmers’ Conceptions
of "Object" and "Class", and Variation Theory. In Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’05). ACM, New York, NY, USA, 89–93. https://doi.org/10.1145/1067445.
1067473

[9] Ann E. Fleury. 1991. Parameter Passing: The Rules the Students Construct. ACM
SIGCSE Bulletin 23, 1 (1991), 283–286.

[10] Ann E. Fleury. 2000. Programming in Java: Student-Constructed Rules. In Pro-
ceedings of the Thirty-First SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’00). Association for Computing Machinery, New York, NY,
USA, 197–201. https://doi.org/10.1145/330908.331854

[11] Matthias Hauswirth and Andrea Adamoli. 2017. Identifying Misconceptions with
Active Recall in a Blended Learning System. In Data Driven Approaches in Digital
Education (Lecture Notes in Computer Science), Élise Lavoué, Hendrik Drachsler,
Katrien Verbert, Julien Broisin, andMar Pérez-Sanagustín (Eds.). Springer Interna-
tional Publishing, Cham, 416–421. https://doi.org/10.1007/978-3-319-66610-5_36

[12] Matthias Hauswirth and Andrea Adamoli. 2017. Metacognitive Calibration
When Learning to Program. In Proceedings of the 17th Koli Calling International
Conference on Computing Education Research (Koli Calling ’17). Association for
Computing Machinery, New York, NY, USA, 50–59. https://doi.org/10.1145/
3141880.3141904

[13] Simon Holland, Robert Griffiths, and Mark Woodman. 1997. Avoiding Object
Misconceptions. In Proceedings of the Twenty-Eighth SIGCSE Technical Symposium
on Computer Science Education (SIGCSE ’97). ACM, New York, NY, USA, 131–134.
https://doi.org/10.1145/268084.268132

[14] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003. Iden-
tifying and Correcting Java Programming Errors for Introductory Computer
Science Students. In Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’03). Association for Computing Machinery,
New York, NY, USA, 153–156. https://doi.org/10.1145/611892.611956

[15] J. Jackson, M. Cobb, and C. Carver. 2005. Identifying Top Java Errors for Novice
Programmers. In Proceedings Frontiers in Education 35th Annual Conference. IEEE,
USA, 24–27. https://doi.org/10.1109/FIE.2005.1611967

[16] Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geoffrey L. Herman.
2010. Identifying Student Misconceptions of Programming. In Proceedings of the
41st ACM Technical Symposium on Computer Science Education - SIGCSE ’10. ACM
Press, Milwaukee, Wisconsin, USA, 107. https://doi.org/10.1145/1734263.1734299

[17] Antti-Juhani Kaijanaho. 2015. Evidence-Based Programming Language Design :
A Philosophical and Methodological Exploration. Jyväskylä studies in computing
222 (2015).

[18] Brenda Keogh and Stuart Naylor. 1999. Concept Cartoons, Teaching and Learning
in Science: An Evaluation. International Journal of Science Education 21, 4 (April
1999), 431–446. https://doi.org/10.1080/095006999290642

[19] Colleen Lewis. 2021. Computer Science Teaching Tips.
https://www.csteachingtips.org/ [Accessed March 29, 2021].

[20] Linxiao Ma. 2007. Investigating and Improving Novice Programmers’ Mental
Models of Programming Concepts. PhD Thesis. University of Strathclyde, Glasgow,
Scotland.

[21] Tara Madhyastha and Steven Tanimoto. 2009. Faring with Facets: Building and
Using Databases of Student Misconceptions. Journal of Interactive Media in
Education 2009, 1 (Feb. 2009), Art. 5. https://doi.org/10.5334/2009-1

[22] Sandra Madison and James Gifford. 1997. Parameter Passing: The Conceptions
Novices Construct. RIE ED406211. ERIC. 30 pages.

[23] Tanya J. McGill and Simone E. Volet. 1997. A Conceptual Framework for Analyz-
ing Students’ Knowledge of Programming. Journal of Research on Computing in
Education 29, 3 (March 1997), 276–297. https://doi.org/10.1080/08886504.1997.
10782199

[24] Jim Minstrell. 2000. Student Thinking and Related Assessment: Creating a Facet-
Based Learning Environment. In Grading the Nation’s Report Card: Research from
the Evaluation of NAEP. National Academies Press, Washington, D.C. https:
//doi.org/10.17226/9751

[25] Roy D. Pea. 1986. Language-Independent Conceptual “Bugs” in Novice Program-
ming. Journal of educational computing research 2, 1 (1986), 25–36.

[26] Ralph T. Putnam, D. Sleeman, Juliet A. Baxter, and Laiani K. Kuspa. 1986. A
Summary of Misconceptions of High School Basic Programmers. Journal of
Educational Computing Research 2, 4 (Nov. 1986), 459–472. https://doi.org/10.
2190/FGN9-DJ2F-86V8-3FAU

[27] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACMTransactions
on Computing Education 18, 1 (Oct. 2017), 1–24. https://doi.org/10.1145/3077618

[28] Noa Ragonis and Mordechai Ben-Ari. 2005. A Long-Term Investigation of the
Comprehension of OOP Concepts by Novices. Computer Science Education 15, 3
(Sept. 2005), 203–221. https://doi.org/10.1080/08993400500224310

[29] Philip M. Sadler and Gerhard Sonnert. 2016. Understanding Misconceptions:
Teaching and Learning in Middle School Physical Science. American Educator 40,
1 (2016), 26–32.

[30] Jorma Sajaniemi, Marja Kuittinen, and Taina Tikansalo. 2008. A Study of the
Development of Students’ Visualizations of Program State during an Elemen-
tary Object-Oriented Programming Course. Journal on Educational Resources in
Computing 7, 4 (Jan. 2008), 1–31. https://doi.org/10.1145/1316450.1316453

[31] Lee S. Shulman. 1986. Those Who Understand: Knowledge Growth in Teach-
ing. Educational Researcher 15, 2 (Feb. 1986), 4–14. https://doi.org/10.3102/
0013189X015002004

[32] Teemu Sirkiä and Juha Sorva. 2012. Exploring Programming Misconceptions:
An Analysis of Student Mistakes in Visual Program Simulation Exercises. In
Proceedings of the 12th Koli Calling International Conference on Computing Ed-
ucation Research - Koli Calling ’12. ACM Press, Koli, Finland, 19–28. https:
//doi.org/10.1145/2401796.2401799

[33] D. Sleeman, Ralph T. Putnam, Juliet Baxter, and Laiani Kuspa. 1986. Pascal and
High School Students: A Study of Errors. Journal of Educational Computing
Research 2, 1 (Feb. 1986), 5–23. https://doi.org/10.2190/2XPP-LTYH-98NQ-BU77

[34] John P. Smith III, Andrea A. diSessa, and Jeremy Roschelle. 1994. Misconceptions
Reconceived: A Constructivist Analysis of Knowledge in Transition. Journal
of the Learning Sciences 3, 2 (April 1994), 115–163. https://doi.org/10.1207/
s15327809jls0302_1

[35] Juha Sorva. 2007. Students’ Understandings of Storing Objects. In Proceedings of
the Seventh Baltic Sea Conference on Computing Education Research - Volume 88
(Koli Calling ’07). Australian Computer Society, Inc., Koli, Finland, 127–135.

[36] Juha Sorva. 2008. The Same but Different Students’ Understandings of Primi-
tive and Object Variables. In Proceedings of the 8th International Conference on
Computing Education Research - Koli ’08. ACM Press, Koli, Finland, 5. https:
//doi.org/10.1145/1595356.1595360

[37] Juha Sorva. 2012. Visual Program Simulation in Introductory Programming Educa-
tion. PhD Thesis. Aalto University, Espoo, Finland.

[38] Juha Sorva. 2013. Notional Machines and Introductory Programming Education.
ACM Transactions on Computing Education 13, 2 (June 2013), 1–31. https://doi.
org/10.1145/2483710.2483713

[39] Alaaeddin Swidan, Felienne Hermans, and Marileen Smit. 2018. Programming
Misconceptions for School Students. In Proceedings of the 2018 ACM Conference
on International Computing Education Research - ICER ’18. ACM Press, Espoo,
Finland, 151–159. https://doi.org/10.1145/3230977.3230995

[40] Mariana Teif and Orit Hazzan. 2006. Partonomy and Taxonomy in Object-
Oriented Thinking: Junior High School Students’ Perceptions of Object-Oriented
Basic Concepts. InWorking Group Reports on ITiCSE on Innovation and Technology
in Computer Science Education (ITiCSE-WGR ’06). Association for Computing
Machinery, New York, NY, USA, 55–60. https://doi.org/10.1145/1189215.1189170

[41] Christine D Tippett. 2010. Refutation Text in Science Education: A Review of Two
Decades of Research. International Journal of Science and Mathematics Education
8, 6 (Dec. 2010), 951–970. https://doi.org/doi:10.1007/s10763-010-9203-x

[42] Tobias Wrigstad and Elias Castegren. 2019. Mastery Learning-Like Teaching
with Achievements. CoRR abs/1906.03510 (2019). arXiv:1906.03510

https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1145/358172.358408
https://doi.org/10.1145/3304221.3319771
https://doi.org/10.1145/3304221.3319771
https://doi.org/10.1016/S0953-5438(97)00006-4
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://arxiv.org/abs/https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.1145/1067445.1067473
https://doi.org/10.1145/1067445.1067473
https://doi.org/10.1145/330908.331854
https://doi.org/10.1007/978-3-319-66610-5_36
https://doi.org/10.1145/3141880.3141904
https://doi.org/10.1145/3141880.3141904
https://doi.org/10.1145/268084.268132
https://doi.org/10.1145/611892.611956
https://doi.org/10.1109/FIE.2005.1611967
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1080/095006999290642
https://doi.org/10.5334/2009-1
https://doi.org/10.1080/08886504.1997.10782199
https://doi.org/10.1080/08886504.1997.10782199
https://doi.org/10.17226/9751
https://doi.org/10.17226/9751
https://doi.org/10.2190/FGN9-DJ2F-86V8-3FAU
https://doi.org/10.2190/FGN9-DJ2F-86V8-3FAU
https://doi.org/10.1145/3077618
https://doi.org/10.1080/08993400500224310
https://doi.org/10.1145/1316450.1316453
https://doi.org/10.3102/0013189X015002004
https://doi.org/10.3102/0013189X015002004
https://doi.org/10.1145/2401796.2401799
https://doi.org/10.1145/2401796.2401799
https://doi.org/10.2190/2XPP-LTYH-98NQ-BU77
https://doi.org/10.1207/s15327809jls0302_1
https://doi.org/10.1207/s15327809jls0302_1
https://doi.org/10.1145/1595356.1595360
https://doi.org/10.1145/1595356.1595360
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/3230977.3230995
https://doi.org/10.1145/1189215.1189170
https://doi.org/doi:10.1007/s10763- 010-9203-x
https://arxiv.org/abs/1906.03510

	Abstract
	1 Introduction
	2 Programming Language Misconceptions
	2.1 An Actionable Definition
	2.2 Programming Language Dependence

	3 Organizing a Collection of Misconceptions
	3.1 Form of a Misconception
	3.2 Structure of the Collection

	4 Content
	5 Evaluation
	5.1 Evaluation of the Definition
	5.2 Evaluation of the Organization

	6 Conclusions
	Acknowledgments
	References

