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Abstract

Background and Context. Notional machines are widespread in

computing education.While they often are used to explain program-

ming concepts, prior work on visual program simulation demon-

strated their use for assessment. This paper presents a qualitative

study of the use of a notional machine identified in prior literature—

“expression as tree”—as an instrument to assess the understanding

of expressions.

Objectives. The study answers the following research questions:

What are the mistakes that students make when answering ques-

tions based on the “expression as tree” notional machine? What

underlying reasons plausibly explain these mistakes? Are there

plausible relationships between the mistakes and programming

language misconceptions?

Method.We collect a corpus of 542 hand-drawn expression tree

diagrams from 12 exams in 6 university programming courses at

two different levels over the course of 4 years. We devise and use

a coding approach tailored to the qualitative analysis of those di-

agrams. Our qualitative data analysis approach is unique due to

the specific form of the data—hand–drawn diagrams—that admits

a wide variety of mistakes, due to the theoretically well–defined

programming language constructs that underpin the visualizations,

and due to the fact that for each diagram there exists a unique

solution that can serve as a reference.

Findings. Our results show that even a single question based on

the notional machine is able to reveal a rich variety of mistakes

related to the structure, typing, and evaluation of expressions. We

identify and categorize 48 mistakes and describe outstanding ones

in detail, supported by example diagram snippets. We find mistakes

that are plausibly connected to known misconceptions, and others

that suggest the existence of new ones.

Implications. Our findings shed light on novel pedagogical strate-

gies to teach programming and provide insights instructors can

use to transform their practices. The use of the “expression as tree”
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notional machine as an assessment instrument can provide valu-

able insights into students’ understanding of several key aspects of

programming.
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1 Introduction

When teaching programming, educators often use Notional Ma-
chines (NMs) [19, 42] to explain the constructs of a programming

language. Prior work describing NMs abounds; for example, there

is work on NMs focusing on runtime stacks and scoping [15], evalu-

ation by substitution for recursion [48], or object-oriented program

execution [5]. Programming teachersmay use an entire repertoire of

NMs; a recent publication collected 43 NMs used by educators [21].

This paper studies such a NM, which focuses on language con-

structs that are prevalent but often neglected in educational mate-

rials: expressions [13]. The NM is known as “expression as tree”. It

focuses on the hierarchical structure, the types, and the evaluation

of expression constructs.

While notional machines are often used for explanatory purposes,
“visual program simulation” systems like UUhistle [43] encourage

their use for assessment purposes as well. In this paper, we study

specifically the use of the “expression as tree” NM for assessment.

The following research questions, inspired by the structure used

by Sirkiä and Sorva [41], drive our investigation:

RQ1 What are the mistakes that students make when answering

questions based on the “expression as tree” NM?

RQ2 What underlying reasons plausibly explain key mistakes?

Are there plausible relationships between the mistakes and

programming language misconceptions?
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To answer these questions, we qualitatively analyze 542 expres-

sion trees hand-drawn by students in twelve exams of Java pro-

gramming courses on two different educational levels over four

years. Our goal is to provide a foundation on which educators and

researchers can design and study new kinds of light-weight assess-

ment items with the “expression as tree” NM to investigate the

conceptual understanding of expressions.

2 Background and Related Work

We now discuss related work on the theoretical foundations under-

pinning this study, on the understanding of expressions in particular,

and on notional machines. Then we describe the “expression as

tree” NM that is the subject of our study.

2.1 Theoretical Foundations

Theories in computing education research have been character-

ized [29] as learning sciences and education research theories—

such as “cognitive load theory” [44]—or as domain-specific theories

of computer science knowledge—such as Nelson et al.’s “formal

theory of program tracing knowledge” [30]. Our research is most

directly related to the latter kind of theory, the foundational the-

ory underlying programming languages [35, 49]. Unlike natural

languages, programming languages are necessarily completely and

unambiguously specified. Even in the absence of a formal specifica-

tion, a language’s compiler or interpreter provides a complete and

precise definition of all possible programs in the language. Thus

they embody the complete syntax and semantics of the language.

However, the implementations of compilers and interpreters are

complex–mostly due to their focus on performance–and hard to

reason about. To simplify formal reasoning about programming lan-

guage properties, many mainstream languages have been specified

in a theoretical mathematical sense. Such theories exist for example

for Java [7], JavaScript [33], and Python [36]. Because even these

theoretical specifications still can consist of over a thousand rules,

simpler core languages, like Featherweight Java [24] for Java or

𝜆𝐽 𝑆 [23] for JavaScript, have been developed. Those core languages

focus on the most essential language constructs. At the very center

of many of these theoretical formalizations sits the lambda calcu-

lus [14], a theory of computation and a programming language

consisting of only three constructs, all of them expressions.

Unlike many learning science and education research theo-

ries, programming language theories represent formal systems,

exactly like mathematical theories, which are amenable to formal

reasoning and proof. For example, given the rules of a program-

ming language like Java, we can reason unambiguously whether

"Hello".charAt(2) evaluates to ’l’. No human interpretation,

and no expert opinion is necessary. All that is needed is the mechan-

ical application of the theory, the syntactic and semantic language

rules.

2.2 Understanding Expressions

An expression is a term in a program that produces a value. Ex-

pressions are written by composing various language constructs,

the most basic of which are literals, variable names, and operators.

Widely-used languages like Java provide a rich set of expression-

related features, such as method calls, type casts, or array ac-

cesses, that can be organized into over 25 different expression

constructs [13].

Syntax: Understanding Structure. . The source code of a program

consists of a sequence of characters. However, correct programs

are constrained by the grammatical rules of the programming lan-

guage. The grammar imposes a tree structure onto the code. While

block-based languages like Scratch [37] make that structure explicit,

and syntax-directed editors [4, 27, 31] guide the programmer in

following that structure, in textual languages that tree structure

is invisible. Nevertheless, it is there, and students need to be able

to recognize that structure in their code [27] in order to properly

compose, restructure, and decompose programs.

Static Semantics: Understanding Types. . In a statically typed lan-

guage such as Java, each expression has a statically-known type [34].

Many misconceptions about types have been documented [12, 47]

and various approaches to help students understand types have

been described [38]. Understanding the typing of expressions

is important: suppose that a student writes the Java expression

Integer.parseInt("10") == "10". They try to compile the pro-

gram, but receive an error: bad operand types for binary
operator ==. To understand the cause of this error, and to under-

stand how to fix it, students need to be able to reason about the

typing of expressions.

Dynamic Semantics: Understanding Evaluation. . The purpose of an

expression is to be evaluated. Prior work introduced ways to explain

the process of expression evaluation: for example, by using ants

walking through nested “circles of evaluation” [40], by providing au-

tomated visual tutors explaining the evaluation of expressions [26],

or by providing tools that allow students to visually simulate pro-

gram execution [43]. Understanding the evaluation of expressions

is important: suppose that a program written by a student contains

the expression o != null & o.m(). The student intends to avoid

invoking the method m on o when o is null. They try to execute

their program, and they receive a NullPointerException error

(because the & operator always evaluates both sides). To under-

stand and fix this error, students need to be able to reason about

the evaluation of expressions.

2.3 Notional Machines

The term Notional Machine (NM) was coined in 1981 by du Boulay

et al., in the context of teaching Logo, to describe “the idealized

model of the computer implied by the constructs of the program-

ming language” [19]. Given the substantial increase in published

papers that cite or reference NMs in the mid-2010s, a working group

of 12 senior computing education researchers, including du Boulay,

published an extensive literature review and analysis of 43 NMs

used by educators [21].

NMs sit exactly at the intersection between the theories of con-

tent knowledge (programming language theories) and learning

sciences and education research theories.
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2.4 “Expression as Tree” Notional Machine

“Expression as tree” is one of the NMs described in the aforemen-

tioned survey of NMs [21]. It centers around the structure, typing,

and evaluation of expressions. The NM is essentially a visualiza-

tion of the abstract syntax trees that are used to reason about

programming languages, both in designing compilers [3] and in the

specification of programming language semantics [34]. It is equiva-

lent in structure to pedagogical tools and languages used to teach

programming in school, such as the “circles of evaluation” [40].

The visualization resembles that of the structure of expressions

in block-based programming languages such as Scratch [28] and

Snap! [22]. Those block–based languages can be seen as visual

versions of textual syntax-directed editors such as the the Cornell

Program Synthesizer [46].

Given the following Java code:

public class A {

public String m(boolean condition) {

return "condition=" + (condition ? "true" :

"false");

}

}

(1) Draw an expression tree for the expression in the return
statement of the method.

(2) Annotate each node with the type of the value produced by
the node.

(3) Annotate each node with the value it produces if the expression
is evaluated with condition = true.

Make sure to specify the type of all nodes. Make sure to specify the
value of all the nodes that are evaluated.

Figure 1: Exam question E05 and correct answer, using the

“expression as tree” NM.

As illustrated in Figure 1, the primary focus of the NM is on the

structure. The expression is broken down into subexpressions, and

each subexpression is represented as a subtree. Nodes can contain

“holes” (depicted as little gray circles in Figure 1), which are used as

connection points. Edges connect a hole to another node, to indicate

that the latter is the root of a subexpression. This representation re-

sembles how expressions are represented in block-based programs;

however, the visual “decomposition” of the structure allows each

node to be annotated with additional information.

Once the structure is drawn, the type of each node is calculated

bottom-up
1
and each node is annotatedwith its type (e.g., in Figure 1

as blue labels at the top left of each node).

1
The constructs of Java covered in the studied courses do not require type inference. De-

termining their types can be done essentially following the typing algorithm described

by Pierce [34] for Featherweight Java.

Finally, once the expression has been successfully type-checked,

one may also evaluate the expression. The algorithm for evalua-

tion also proceeds bottom-up, but has a key difference from typing:

it does not necessarily traverse all nodes. In the presence of con-

ditional computations (e.g., a short-circuit operator as per Java

Language Specification (JLS) 15.23 and JLS 15.24, or a conditional

expression JLS 15.25), it may skip entire sub–trees. The green labels

in Figure 1 exemplify this: the ‘else’ branch of the conditional is

not evaluated, and thus no value is shown above the corresponding

node.

3 Methodology

To answer our two research questions, we collected and qualita-

tively analyzed a corpus of 542 hand-drawn expression trees created

by students in different exams of university-level programming

courses.

3.1 Context

We studied artifacts from exams because of their authenticity: they

were not artificially created for a lab study, but they represent

questions that had been asked in a real-world context. Moreover,

they were created in a supervised setting, with clear incentives for

students to give accurate answers.

The exams took place in six courses at a research university,

taught by the same instructor over the course of four years. Three

of the courses were second-semester Bachelor courses in object-

oriented programming for Computer Science students, and three

were courses for existing teachers who got their qualifications to

teach computer science in high school. The students in the former

were mostly in their first year after graduating from high school,

while the students in the latter were existing high school teachers

of a multitude of non-CS subjects (STEM and beyond), all with a

prior graduate degree in their subject, and some with more than

a decade of teaching experience. Because we studied pre-existing

artifacts, we do not have detailed demographic information about

the students who had produced them.

In all courses, the “expression as tree” NM was used during

the course lessons as one of the pedagogical tools to explain ex-

pressions, for example to explain nesting and chaining of method

calls, or allocating and accessing arrays. Thus, all students acquired

familiarity with the notation well before the exam.

All courses had concluded before this research study began. The

ethics representative at our university confirmed that we could

study past exams, with the caveat of not showing actual student

drawings for privacy reasons. We thus refrain from doing that and

digitally redraw all the examples shown in this paper.

3.2 Corpus

Our corpus consists of the 542 hand-drawn student answers to

all exam questions that used the “expression as tree” NM. Each

exam featured only a single question based on this NM, thus each

question comes from a different exam.

Table 1 summarizes the 12 exam questions. Together,

the questions explore a total of 12 expression con-

structs. They are the instantiation of classes and arrays

(ClassInstanceCreation and ArrayInstanceCreation), method

https://docs.oracle.com/javase/specs/jls/se11/html/jls-15.html#jls-15.23
https://docs.oracle.com/javase/specs/jls/se11/html/jls-15.html#jls-15.23
https://docs.oracle.com/javase/specs/jls/se11/html/jls-15.html#jls-15.24
https://docs.oracle.com/javase/specs/jls/se11/html/jls-15.html#jls-15.25
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Table 1: For each question: ID, source code of the expression, number of answers (A), unique language constructs (C), nodes

in the expression tree (N), and whether the question required annotating values in addition to drawing the structure of the

tree and annotating types. The last row shows the total number of questions (ID), the total number of answers (A), the overall

number of unique constructs (C), the total number of tree nodes across all questions (N), and the number of questions requiring

value annotations.

ID Expression Source Code A C N Values

E01 (d > 1/2) ? ("Hi" + ’!’).length() : new int[s.length()].length + i 8 9 16

E02 "ar[ix] =" + ((null != ar && ix < ar.length) ? (ax[ix] + "") : "no") 13 7 17 ✓

E03 gt(a, b) ? "a > b" : (a < b ? "a < b" : "a == b") 16 5 11 ✓

E04 "a[i] = " + (a != null ? id(a)[i].toString() + "0" : "X") 19 7 14 ✓

E05 "condition=" + (condition ? "true" : "false") 24 4 6 ✓

E06 "a[i] = " + ((a != null && a.length > i) ? ("" + a[i]) : "nothing") 25 7 17 ✓

E07 new Runner(v).a().b(c(d)) 46 3 6

E08 "a[i] = " + (a == null ? "X" : id(a[i].toString())) + ’+’ + 0 64 9 16 ✓

E09 publish(make("this"), make("that")) 71 2 5 ✓

E10 1 + rest.len() 84 4 4

E11 new Cons("A", new Empty()).len() 84 3 4

E12 height >= 0 ? nameFor(twice(height)) : "height < 0" 88 6 8

12 542 12 124 7

invocations (MethodInvocation), field, array, and variable accesses
(FieldAccess, ArrayAccess, and SimpleVariableAccess), op-
erators (InfixExpression and ConditionalExpression) and

literals (CharacterLiteral, NullLiteral, NumberLiteral and

StringLiteral). These constructs are a subset of all expression
constructs included in Java 11, following the naming presented by

Chiodini et al. [13].

3.2.1 Question Structure. All exams were paper-based. Students

had to draw expression trees in the free space provided on the page

showing the exam question. An example of a complete question

can be seen for E05 in Figure 1. The question setup was stable

throughout the exams, with only minor variations
2
. These differ-

ences include the presence of hints on how to handle situations for

which the instructor felt that a clarification was needed (e.g., which

label to use as a type for a NullLiteral) and the aspects under

focus. All the exam questions assessed students on the structure
and types aspects; only some, marked under the ‘Values’ column in

Table 1, also assessed values.
The example expression tree in Figure 1 includes nodes of

four different constructs: one ConditionalExpression node,

a SimpleVariableAccess node (for the variable condition),
an InfixExpression node (with the + operator), and three

StringLiteral nodes (for the literals "condition=", "true", and
"false").

Some of the expressions in Table 1 may seem too complex. This

is just an artifact of using questions from real exams, a choice which

otherwise has clear advantages (Section 3.1). The expressions are

not intended to resemble typical Java code written by novices; they

serve the goal of efficiently assessing the understanding of several

programming language constructs (all covered during the courses)

in one exam question.

2
All the exam question statements are available in the supplementary materials [6].

3.2.2 Representativeness of the Corpus. The constructs in our cor-

pus match the top eight expression constructs identified in pre-

vious research when studying the prevalence of expression con-

structs [13, Table 3] in student code extracted from the Blackbox

dataset [9]. The only exception is the Assignment construct, which
does not appear in our corpus as an expression

3
. In addition to

these prevalent constructs, the corpus also includes fundamen-

tal literal constructs (CharacterLiteral and NullLiteral), as
well as ArrayInstanceCreation (appearing only in one exam) and

ConditionalExpression (appearing in 8 of the 12 exams), which

were found less frequently in the expression prevalence study in

Java code written by students.

While understanding how to allocate arrays may reasonably

not be considered a high–priority competency [11], the particu-

larly low prevalence of ConditionalExpression in the BlackBox

dataset (less than 0.1% of expression constructs) indicates that some

educators might also consider understanding conditional expres-

sions (cond ? ifTrue : ifFalse) less relevant. This is somewhat

surprising, because this construct is simply the expression-version

of an if-else statement. Conditional expressions are a fundamental

construct in programming language design [34]. Their evaluation

behavior, where only one of the two cases is evaluated, is akin to

how if-statements are evaluated. However, conditional expressions

are theoretically simpler, because unlike conditional statements,

they can be understood without an understanding of mutation and

side-effects.

3.3 Qualitative Analysis Approach

Analyzing our corpus of data poses peculiar challenges. On the one

hand, the answers are hand-drawn diagrams which leave a lot of

3
Unlike in some other languages, in Java assignments are expressions. Thus they

can appear anywhere inside an expression, like in a + (b = c) + d. The courses
avoided this general use of assignments, and thus refrained from including assignment

operators in “expression as trees” exam questions.



Assessing the Understanding of Expressions Koli Calling ’24, November 12–17, 2024, Koli, Finland

room for interpretation and favour an open coding approach. On

the other hand, the diagrams represent programming language con-

structs which are unambiguously defined and thus favor a closed

coding approach. The goal of our analysis is to capture all meaning-

ful mistakes, minimizing the chance of missing some relevant ones.

Thus we aimed for a coding approach that fulfils the following three

requirements:

(1) Capture every significant deviation of the student’s diagram

from a correct diagram;

(2) Connect observed differences to the related programming lan-

guage concepts;

(3) Provide logical mistakes instead of merely physical differences.

Our approach is related to inductive thematic analysis [8]. How-

ever, our context differs from traditional applications of thematic

analysis, such as the recent production of a set of tags for Java pro-

gram construction [10]. In our context, (1) there is a single, known,

correct solution to which an artifact can be compared, (2) the con-

structs used in the artifact are based on an unambiguous theory

(the language specification), (3) the data analyzed is of a graphical

nature, and (4) the goal is to determine higher-level mistakes.

We had to design an analysis approach that takes into consid-

eration those particularities, integrates inductive and deductive

aspects, and enables the analysis of diagrammatical artifacts. Our

approach is inspired by Saldaña’s view of coding [39]: “first cycle

coding is analysis—taking things apart. Second cycle coding is syn-
thesis—putting things together into new assemblages of meaning”.

Capturing and categorizing the significant deviations is a form of

first-cycle coding, while providing logical mistakes can be seen as

a form of second-cycle coding.

We proceeded in three phases. The goal of Phase I was to find a

good structure for coding the diagrams. A five-dimensional struc-

ture for codes (detailed in Section 3.4) grew organically during the

frequent discussions amongst the coders in this phase. Each coder

coded all the answers of at least one exercise. To minimize inter-

coder and intra-coder discrepancies, the first phase was followed

by a Consolidation Phase: each coder analyzed one answer from

each exercise already analyzed, including the ones previously coded

by the same coder. The discrepancies in codings were discussed

and resolved; and as a result, the description of all the codes was

improved to increase consistency among coders. The remaining

exercises were then coded during Phase II without further altering
the number of dimensions.

3.4 A Structure for Codes

We recorded every significant deviation of a student’s diagram

from the correct diagram using codes with five dimensions: Aspect
- Construct - Operation - Qualification, and Mistake. The first four
dimensions describe the physical difference, the last one describes

the logical mistake. As a concrete example, the incorrect tree snippet

shown on the left of Figure 2 is tagged with the two following codes:

(1) Structure-SimpleVariableAccess-WasInlined-
MethodInvocation, paired with mistake VariableInlined

(2) Structure-MethodInvocation-HasInlinedChild-
Target, paired with mistake TargetInlined.

Figure 2: Example of an incorrect snippet from a student

on the left, and its corresponding snippet from the solution

on the right from E01. The target of a MethodInvocation is a
subexpression and should therefore be represented with a

separate node.

3.4.1 Aspect and Construct. The first two dimensions are related

to the programming language: which aspect (i.e., structure, types,
values) and which construct (one of twelve listed in Section 3.2) the

code refers to.

3.4.2 Operation and Qualification. The next two dimensions,

which emerged during Phase I of our process, are loosely re-

lated to tree edit distance algorithms. They specify an oper-
ation (e.g., WasInlined), augmented with a qualification (e.g.,

MethodInvocation), that would fix the observed difference in the

given expression tree, turning the incorrect tree into a correct one.

The operations derived from tree edit distance algorithms are

deletion (Missing), insertion (Extra), and changing (Replaced)
of nodes [50]. These provide a good starting point. However, the

structure of diagrams in the NM is more elaborate than that of

a simple tree. Thus we include two additional sets of operations.

The first set concerns the structure within one node. Elements of

a node may be (1) “split off” into a child (SplitContent), (2) miss-

ing (MissingContent), or (3) extraneous additions (ExtraContent).
The second set involves operations on multiple nodes. A possible

scenario occurs when a node is inlined into its parent, so that

the hole of the parent is replaced with the elements of the child

(HasInlinedChild and WasInlined). Other scenarios may be de-

scribed as a “tree rotation” [2] (Rotate) and the relocation of entire

subtrees (LostChildRelocated).
We use these operations to describe the structure, which is the

primary aspect under focus of the NM. Given that types and values
are simply unstructured annotations on the tree, these aspects

are coded using three generic operations (Missing, Extra, and
Replaced), with the qualification characterizing the replacements.

3.4.3 Mistake. The last dimension of our structured codes is a

‘logical’ mistake, which we recorded whenever we could devise a

higher-level characterization of the problem in the tree. A mistake

captures semantic information that is not always derivable from

the low-level ‘physical’ differences.

3.5 Relationship to Known Coding Methods

Figure 3 relates our coding approach to the underlying established

coding methods, as described by Saldaña [39].

To characterize the deviations (aspect, construct, operation, and
qualifications) from the correct solution, we use Descriptive Cod-

ing. The aspect and construct follow the Provisional Coding

(closed coding) method, because the codes are already known a-

priori. The operation and qualification follow the Initial Coding

(open coding) method, because the codes emerged from the data

during our initial phase. We use Subcoding to refine the operations
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Aspect Construct Operation

Deviation

Simultaneous Coding
Subcoding

Provisional Coding Initial Coding

Pattern Coding
Focused Coding

Themeing the DataDescriptive Coding

Qualification Mistake

Figure 3: Our coding approach and its relationship to estab-

lished coding methods described by Saldaña [39]

with qualifications (subcodes). Finally, we use Simultaneous Cod-
ing in that the aspect, construct, and operation/qualifications are
simultaneous codes describing several aspects of a given deviation.

To move from the descriptive codes of a deviation towards the

logical mistakes, we combine the following methods: We use The-

meing the Data (Saldaña [39] includes aspects of thematic analysis

in this) and Pattern Coding to group similar deviations. We also

use Focused Coding by sorting deviations by their frequencies,

their aspects, constructs, operations, and qualifications, to focus our

mistake identification on the most frequent and the most salient

deviations.

3.6 Connecting Mistakes to Misconceptions

Instructors care about mistakes, because their presence in a tree

drawn by a student may be an indication that the student holds one

or more misconceptions. In the same way that an illness causes a
symptom, a wrong belief about the syntax or semantics of the pro-

gramming language (i.e., a programming language misconception)

may cause the presence of specific mistakes in an expression tree.

After identifying the mistakes, we identified plausible causal

relations between misconceptions and mistakes. Specifically, we

considered a publicly available inventory of programming language

misconceptions [12]. For this analysis, we perused 74 misconcep-

tions in Java that, at the time of this writing, were either tagged

with the concept “expression”
4
or marked as “expressible in the

‘expression as tree’ NM”
5
, or both. To hypothesize about the causes

of the mistakes, we refer to each misconception’s “incorrect state-

ment”. That statement expresses the wrong belief held by a student

with such a misconception.

4 Results

We characterized in detail each of the 542 expression trees using

the structured coding system described in Section 3. We found

10.1% of the answers to be empty (all nodes were missing). Of the

remaining, an additional 6.8% and 6.5% were completely lacking

type and value labels, respectively. Because the diagrams were

hand-drawn on paper, some of them deviated significantly from the

notation. During our analysis, we tried to accommodate variations

as far as we could understand them. Of the non-empty answers,

4.9% could not be analyzed for their structure (and consequently

also for the types and values); 1.3% and 2.4% were further excluded

only from the analysis of types and values, respectively.

Excluding the unassessable cases, we coded 1906 deviations using

404 distinct five-dimensional codes. The number of distinct codes

may seem dauntingly large, however, thanks to the structured codes

we only needed to develop and use a relatively small number of code

4
https://progmiscon.org/concepts/expression

5
https://progmiscon.org/notionalMachines/ExpressionAsTree

components amongst each of the five dimensions: the 3 possible

aspects, the 12 expression constructs occurring in the exams, 15

operations, each with possible qualifiers, and 48 mistakes.

4.1 Mistakes (RQ1)

Our qualitative analysis carried out to answer RQ1 revealed 48

mistakes. We organized all the mistakes into a hierarchy, shown

in Figure 4. At the top level, we grouped the mistakes according to

the three aspects covered by the NM (structure, types, values). The

second level uses categories to bring together mistakes that share

certain characteristics.

The Structure mistakes are categorized into: Lack of Composi-
tionality (students did not decompose expressions enough), Incorrect
Decomposition (students decomposed expressions into too small

pieces, which are not expressions anymore), Syntactic Mistakes
(other grammatical mistakes), Extra Content (tree includes pieces
that do not exist in code), and Missing Content (tree lacks pieces
that exist in code).

The Types and Values mistakes are categorized into: Missing
(type or value not specified), Bad Notation (incorrect or imprecise

notation), and Typing/Evaluation Mistake (logical mistake in deter-

mining type or value).

4.2 Connection to Misconceptions and Analysis

of Key Mistakes (RQ2)

To answer the second research question (RQ2), we analyzed all

48 mistakes and determined their association with previously re-

ported programming language misconceptions [12]. The right side

of Figure 4 shows the results. We identified 18 existing miscon-

ceptions that are related to the mistakes. Overall, 19 mistakes are

connected to at least one misconception. Some mistakes—like Vari-

ableInlined—are related to multiple misconceptions, and some

misconceptions—like CallReqiresVariable—are related to multi-

ple mistakes.

Mistakes that are not related to any misconceptions may repre-

sent symptoms of misconceptions that have yet to be studied. For

example, the mistakes MethodNameSeparated or TypeNameSep-

arated might indicate that students incorrectly consider methods

and types to be first-class values in Java.

The rest of this section discusses a subset of five key mistakes

in detail. The choice is based on their coverage of all three aspects

(structure, types, values) and different constructs, frequency of

occurrence, and plausible links to misconceptions.

We describe each key mistake and report one or more exams in

which it has occurred, together with the relevant subexpression

excerpted from the exam question. We show the snippet of the tree

redrawn from the actual answer given by a student and the corre-

sponding snippet from the correct solution, with the differences

marked in red.

The discussion of each mistake also includes a section that jus-

tifies its importance and an analysis section that reasons about

potential causes, including both previously documented and poten-

tially new misconceptions.

VariableInlined. A FieldAccess without an explicit target or

a SimpleVariableAccess is inlined into the parent node. This

mistake describes the inlining of two different Java constructs:

https://progmiscon.org/concepts/expression
https://progmiscon.org/notionalMachines/ExpressionAsTree
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BothBranchesOfCondExprEvaluated

OperatorSequenceFlattened

LiteralWithoutValue

TargetInlined

IndexInlined

RightToLeftAssociativity

TypeIsParentHoleType

VariableInlined

InstantiationWithoutNew

CharacterTypeString

SurroundingCode

CharacterLiteralAsStringLiteral

VariableWithoutValue

SubstitutionTakenFromEvaluation

TreeIsChainInSourceOrder

ImpreciseNameOfType

RootNodeWithoutType

RootNodeWithoutValue

ParsedString

LiteralInlined

FieldNameSeparated

ConditionOfCondExprWithoutValue

MethodNameAndArgListSeparated

ParameterlessWithoutParentheses

PrimitiveOrStrLitAsReference

VariableWithoutType

SignatureInContent

StringLiteralWithoutQuotes

ElementTypeInsteadOfArrayType

ConditionOfCondExprInlined

ParenthesesInTree

ValueIncludesPrintedContent

CondExprAlwaysTypeBoolean

TypeOfTarget

LiteralWithoutType

CondExprSplit

ImpreciseNameOfLiteral

NonStandardTypeNotation

NewIsolated

MethodNameSeparated

ArrayLengthWithParentheses

BranchesAttachedToCondition

TypeNameSeparated

ExplicitNestingViolation

ImplicitThis

MultipleParents

Structure

Types

Values

ArgsAsTuple

Missing Type

Bad Notation

Typing Mistakes

ObjectsMustBeNamed

CallRequiresVariable

NoAtomicExpression

Missing Value

Bad Notation

Eval. Mistakes

Lack of 
Compositionality

Syntactic 
Mistakes

Extra Content

Missing Content

ElseAlwaysExecutes

LiteralNoExpression

NoAtomicExpression

ArithmeticPlusPrecedes

TargetTyping

StringValueWithoutQuotes

LiteralNoExpression

NoAtomicExpression

InlineCallInExpressionTree

InlineVariableInExpressionTree

VariablesHoldExpressions

LiteralString

ParenthesesOnlyIfArgument

ArrayAllocationWithoutNew

ConstructorWithoutNew

SingleQuoteString

ThisChildInCallExpression

RightToLeftChaining

ConstructorWithoutNew

ArrayAllocationWithoutNew

ArrayHasLengthMethod

ASPECT CATEGORY MISTAKE MISCONCEPTION

Incorrect 
Decomposition

67/115 (52.3%)

3/44  (6.8%)

9/328  (2.7%)

8/159  (5.0%)

7/159  (4.4%)

10/115  (8.7%)

18/159 (11.3%)

17/115 (14.8%)

61/159 (38.4%)

11/53 (20.8%)

14/217  (6.5%)

9/106  (8.5%)

17/275  (6.2%)

17/64 (26.6%)

53/446 (11.9%)

11/446  (2.5%)

51/446 (11.4%)

14/322  (4.4%)

25/406  (6.2%)

11/372  (3.0%)

26/124 (21.0%)

12/266  (4.5%)

1/44  (2.3%)

12/146  (8.2%)

1/139  (0.7%)

18/466  (3.9%)

66/355 (18.6%)

24/224 (10.7%)

62/480 (12.9%)

10/56 (17.9%)

2/487  (0.4%)

7/487  (1.4%)

5/231  (2.2%)

5/40 (12.5%)

24/64 (37.5%)

15/49 (30.6%)

6/213  (2.8%)

3/124  (2.4%)

2/124  (1.6%)

10/429  (2.3%)

20/429  (4.7%)

12/231  (5.2%)

4/44  (9.1%)

19/231  (8.2%)

25/79 (31.7%)

97/303 (32.0%)

83/346 (24.0%)

41/447  (9.2%)

Figure 4: All the 48 mistakes revealed by our qualitative analysis, grouped by aspect and category. Mistakes are also connected

to documented programming language misconceptions [12]. Key mistakes (starred) are extensively discussed in Section 4.2.
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SimpleVariableAccess, to access a local variable or a parameter,

or FieldAccess, to access an instance or class field. A FieldAccess
looks like a “variable” when it does not have an explicit target in

a context where that is allowed (e.g., accessing an instance field f
just using the name f instead of this.f inside the class body or a

class field which was statically imported).

Table 2 shows two exemplary pair of snippets:

(1) In E01, s is a local variable. Students incorrectly inlined

the variable into the target hole of a MethodInvocation,
whereas the correct tree properly represents the variable as

a subexpression, which needs to be a separate node.

(2) In E02, the local variable ar is mistakenly inlined into the tar-

get hole of an ArrayAccess. The target of an ArrayAccess
can be any expression that evaluates to an array reference

(JLS 15.10.3) and does not necessarily have to be just the

simple name of a variable holding an array reference.

Importance. This mistake often occurs together with the Tar-

getInlined mistake, which describes any target (of a FieldAccess,
MethodInvocation or ArrayAccess) that is inlined into the par-

ent node. Prior work pointed out that popular Java textbooks also

provide incorrect guidance [13], implying that a target of a method

invocation expression has to be a variable: e.g., “when you use a

non-static method, you use the object name, a dot, and the method

name” [20], “to call a method [one uses] a variable that contains a
reference to an object” [17]. This mistake may indicate that students

cannot reason properly about common expressions such as method

invocation chains (like the one in E07).
Potential causes. This mistake could be caused by the miscon-

ception CallRequiresVariable (“one needs a variable to invoke

a method” [12]). If one needs a variable to invoke a method, then

the target of a method invocation cannot be an arbitrary expres-

sion (which would be represented with its own subtree) but is

constrained to be a name. In that case, it would be correct to repre-

sent a method invocation such as o.m() with the variable o inlined

into the method invocation node and not as a separate node. We

can generalize this reasoning when considering the misconception

ObjectsMustBeNamed (“a variable is needed to instantiate an ob-

ject” [12]). If objects must be named, to represent an array access

such as a[0] one would not represent the variable a as a separate
node, but rather inline it into the array access node. Finally, the

misconception NoAtomicExpression (“expressions must consist of

more than one piece” [12]) could also cause this mistake: a variable

access would be atomic and therefore considered not an expression.

TypeIsParentHoleType. The type of a node is incorrectly spec-

ified as the type of the “hole” in its parent node. Table 3 shows

the only opportunity in our corpus for this mistake to occur. In that

exam, over a quarter of the students made this mistake (17 out of

64):

(1) E11 makes use of two classes, Cons and Empty, which
both implement interface Seq { int len(); }. To-

gether, they model a sequence—also known as a singly linked

list—where Cons and Empty are subtypes of Seq. The signa-
ture of Cons’s constructor is Cons(String value, Seq
rest). When typing the expression tree, students mistak-

enly annotated the new Empty() node with Seq as a type,

rather than Empty. Indeed, the second parameter of Cons’s
constructor is of type Seq.

Importance. When students take into account typing informa-

tion from the context (e.g., the parent node), they may be unable

to fully reason about subexpressions in isolation and to exploit

the composable nature of expressions. For instance, in the above

example, new Empty() is a valid expression entirely on its own,

and new Empty().m() would be legal for any method m defined in

class Empty, even if that method did not exist in its supertype Seq.
This valid behavior would not be allowed if a student incorrectly

believes that new Empty() is of type Seq instead.

Potential causes. This mistake stems from not understanding how

types are determined. For the subset of Java covered by the course,

the type of an expression is not determined by its surrounding

context, but rather by the expression itself. This mistake appears

to be a generalization of the TargetTyping misconception (“the

type of a numerical expression depends on the type expected by

the surrounding context” [12]), which only focuses on conversions

between primitive types but could easily be extended to cover cases

related to conversions between reference types.

SubstitutionTakenFromEvaluation. A node is replaced with a

subtree containing code that appears inside methods or con-

structors called by the expression. Table 4 shows two exemplary

pairs of snippets:

(1) In E03, the subexpression gt(a, b) that calls the gtmethod

has been incorrectly replaced with the expression found

within the return statement of the called method. The exam

question indeed included the definition of the gt method:

boolean gt(int a, int b){ return a > b; }.
(2) In E10, the len()method has an extra child which represents

an (incorrect) expression tree for the expression foundwithin

the return statement of the recursive Cons.len() instance
method, whose definition was included in the question: int
len(){ return 1 + rest.len(); }.

Importance. Understanding the dualism between static and dy-

namic nature of code is known to be a deep and challenging aspect

of programming. For example, prior work [18, 45] documents stu-

dents’ confusion with variables “holding” unevaluated expressions

(static), instead of the result of their evaluation (dynamic).

Potential causes. This mistake indicates a conflation of the static

representation of the code, represented by the structure in the ex-

pression tree NM, with the dynamic execution of the program

that follows method calls. This mistake appears to be a gener-

alization of the misconceptions InlineCallInExpressionTree
(“The expression tree of an expression involving a call in-

lines the call’s computation of the returned value.” [12]),

InlineVariableInExpressionTree (“The expression tree of an

expression involving a variable inlines the variable’s defini-

tion.” [12]) and VariablesHoldExpressions (“= stores an expres-

sion in a variable.” [12]).

ParsedString. A string literal is replaced with a subtree rep-

resenting the “expression tree” of the Java code found in the

string. Table 5 shows two exemplary pairs of snippets:

(1) In E12, the text contained in the string literal "height < 0"
is parsed as if it were actual Java code.

https://docs.oracle.com/javase/specs/jls/se11/html/jls-15.html#jls-15.10.3
https://progmiscon.org/misconceptions/Java/CallRequiresVariable
https://progmiscon.org/misconceptions/Java/ObjectsMustBeNamed
https://progmiscon.org/misconceptions/Java/NoAtomicExpression
https://progmiscon.org/misconceptions/Java/TargetTyping
https://progmiscon.org/misconceptions/Java/InlineCallInExpressionTree
https://progmiscon.org/misconceptions/Java/InlineVariableInExpressionTree
https://progmiscon.org/misconceptions/Java/VariablesHoldExpressions
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Table 2: Examples for the VariableInlined mistake

Exam Subexpression Snippet from student Snippet from solution

E01 s.length()

E02 ar[ix]

Table 3: Example for the TypeIsParentHoleType mistake

Exam Subexpression Snippet from student Snippet from solution

E11 new Cons("A", new Empty())

Table 4: Examples of the SubstitutionTakenFromEvaluation mistake

Exam Subexpression Snippet from student Snippet from solution

E03
gt(a, b)
? "a > b"
: (a < b ? "a < b" : "a == b")

E10 rest.len()

(2) In E02, the string literal "ar[ix]= " is replaced by a str()
method call, with the array access that is written as a string

literal parsed as code. This mistake likely originates from

Python’s str() function. That function is used to construct

string representation of values, akin to Object.toString()
in Java.

Importance.Writing code fragments within string literals is com-

mon, for example, for debugging or logging purposes. Not under-

standing the difference between a static sequence of characters (i.e.,

a string), and the tokens of a programming language that are parsed

and eventually executed, can lead to incorrect expectations about

the program behavior.

Potential causes. This mistake, similarly to SubstitutionTaken-

FromEvaluation, stems from an inadequate understanding of the

difference between static and dynamic semantics. Understanding

this difference may be harder for this mistake because of the exis-

tence of features in other programming languages such as “string

templates” (expressions embedded inside string literals) and dy-

namic evaluations of code snippets (e.g., Python and Javascript’s

eval). We could not find a previously documented misconception

that captures this problem; this mistake could thus be a symptom

of a new misconception.

BothBranchesOfCondExprEvaluated. Both branches of a

ConditionalExpression are annotated with values. Table 6

exemplifies one of the exam questions featuring a conditional ex-

pression:

(1) In E08, a == null is false and therefore the then branch

is not evaluated; students instead mistakenly evaluated also

that subtree. While at first sight BothBranchesOfCond-

ExprEvaluated may not seem like a deep mistake, it can

have significant consequences. If Java also wrongly evalu-

ated the else subtree when a == null, this would trigger a

NullPointerException when trying to access the value at

index i of a. This idiom of protecting against null pointer

dereferencing is extremely common in Java code [32].

Importance. The fact that some of the expressions in a conditional

computation are not evaluated is particularly important if the evalu-

ation of these expressions were to fail (throwing an exception, such

as in o != null && o.m() when o is null) or cause a side-effect
(e.g., printing or mutating global state). The evaluation behavior

of the ConditionalOperator is not an idiosyncrasy of Java. Many

other programming languages provide conditional operators with

similar behavior. C, C++, C#, and JavaScript provide the exact same

operator as Java; other languages—including ones currently popular

in education—provide equivalent conditional expression constructs:
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Table 5: Examples of the ParsedString mistake

Exam Subexpression Snippet from student Snippet from solution

E12 "height < 0"

E02 "ar[ix] = "

Table 6: Example of the BothBranchesOfCondExprEvaluated mistake

Exam Subexpression Snippet from student Snippet from solution

E08
a == null
? "X"
: id(a[i].toString())

Python ( _ if _ else _), Racket BSL ( (if _ _ _)), Scala ( if (_)
_ else _), and even the block-based Snap! ( if _ then _ else
_). In languages like Smalltalk/Pharo and the original Self the fact

that only one of the branches is evaluated is even made explicit:

the arguments of these methods need to be functions (blocks). The

paramount importance of the behavior of conditional expressions

is also explicitly mentioned in popular introductory programming

textbooks [1, 25].

Potential causes. The mistake may be caused by students not

understanding that, although evaluation of expressions mostly hap-

pens through a post-order depth-first traversal of the tree, when a

conditional computation is involved (e.g., in a conditional expres-

sion, or with short-circuit operators), the evaluation of an expres-

sion does not traverse at all the non-taken branches. This suggests

the existence of a new misconception, related to an existing one for

conditional statements: ElseAlwaysExecutes (“The else branch of

an if-else statement always executes” [12]). When drawing expres-

sion trees, the problem may be exacerbated by students being also

asked to type-check the tree, which needs to be done for all nodes,

including the ones that will not be evaluated. The notation adopted

by the NM might be at be a contributing factor here due to the

similarities between types and value annotations.

Due to space constraints, we could only report a small subset

of the 48 mistakes that we identified. The comprehensive list de-

tailing all the mistakes and codes that resulted from our analysis is

available in the supplementary materials [6].

4.3 Recommendations for Using “Expression as

Tree” in Assessments

Our results show that the “expression as tree” NM, when used as an

assessment instrument in real-world exams, can uncover a rich and

diverse set of mistakes. Our analysis of the hundreds of student-

drawn expression trees is also a source of recommendations for

instructors or researchers who plan to use this NM in their own

assessments.

Be explicit about notation. Students might be unsure about various

aspects of the notation, such as whether to annotate literal nodes

with values or types (because the nodes’ contents already contains

the exact values), whether to annotate the root node with values or

types (because there is no edge going upwards from the root, and

students may think of annotations as pertaining to edges instead

of nodes), or whether to create nodes to represent parenthesized

expressions. At the expense of being more verbose, an assessment

item could explicitly state these requirements.

Provide the environment binding names to types and values. If an

expression uses a name, the question should define the type and

value of that name. This can be done in two ways: either by ex-

plicitly providing the names and their types (and/or values), or

by providing code that surrounds the expression and defines the

necessary names (e.g., by embedding the expression in a method

with correspondingly named and typed parameters, and indicating

with which argument values the method is called).

Use code context carefully. If an expression is embedded inside a

broader piece of code, students might include parts of that context

in the expression tree. This can be immediately adjacent tokens,

such as the keyword return and the statement terminator ;, or it
can be further away code, such as the bodies of methods invoked

in the expression. On the other hand, for the very same reasons,

providing code context can be useful if one desires to assess the

understanding of the difference between the static nature of code

and its dynamic execution at runtime.

5 Threats to Validity

We now discuss the threats to credibility, transferability, depend-

ability, and confirmability [16] of our results.

https://progmiscon.org/misconceptions/Java/ElseAlwaysExecutes
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Credibility. The corpus we studied is based on exams from real

university–level courses. The coding structure was tied to estab-

lished language constructs and aspects of programming (structure,

typing, evaluation). Our data analysis was conducted by four pro-

gramming language experts with significant experience in program-

ming education. We triangulate the discovered mistakes by relating

them to existing programming language misconceptions.

Transferability. We analyzed 542 diagrams from twelve different

exams from courses across two different education levels, over four

years. All courses were taught by the same instructor; different

instructors might introduce the NM in different ways, which could

lead to different findings. Moreover, the study focuses on Java,

and specifically on the twelve language constructs observed in

the exams. The NM would support a broader set of constructs, for

which the mistakes one would observe might be different.

Dependability. The analysis was performed by four different

coders and took several weeks to complete. To ensure coding consis-

tency, we held frequent consensus finding meetings, often multiple

times per day, and we included a consolidation phase in our process,

where all four coders analyzed the same set of diagrams and dis-

cussed and resolved all discrepancies. Moreover, we captured our

codes in a collaborative spreadsheet with multiple automated con-

sistency checks, and we carefully maintained concise descriptions

of all dimensions throughout the evolution of our code book.

Confirmability. An artifact with our code book, including the

memos describing the codes in detail, the list of the 404 distinct five-

dimensional codes, and the tables with the 1906 coded deviations,

is available in the supplementary materials [6].

6 Conclusion

Expressions are prevalent in code and can be composed of several

language constructs. Understanding expressions means understand-

ing not only the syntax, but also the static (types) and the dynamic

(evaluation) semantics. In this paper we studied a NM that focuses

on expressions as an instrument to assess students’ understanding

of these aspects.

The peculiar nature of our data required us to devise a structured

coding system to qualitatively analyze the trees drawn by students

in a systematic way. Our system exploits the fact that the analyzed

diagrams deviate from a single, correct solution, and it integrates

aspects based on programming language theory with phenomena

inferred from the artifacts. Our methodology can be adopted and

adapted by researchers to analyze other diagrams and NMs.

Our results show that the “expression as tree” NM, when used as

an assessment instrument in real-world exams, can uncover a rich

and diverse set of mistakes, which span all three aspects involved

in understanding expressions and are connected to misconceptions.

We found mistakes that can be associated with misconceptions

previously documented and others that suggest the existence of

new ones. Moreover, the mistakes we identified provide the basis

for designing assessment items and rubrics for practitioners and

researchers.
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