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ABSTRACT
Code comprehension has been shown to be challenging and im-
portant for a positive learning outcome. Students don’t always
understand the code they write. This has been exacerbated by the
advent of large language models that automatically generate code
that may or may not be correct. Now students don’t just have to
understand their own code, but they have to be able to critically
analyze automatically generated code as well.

To help students with code comprehension, instructors often
use notional machines. Notional machines are used not only by
instructors to explain code, but also in activities or exam questions
given to students. Traditionally, these questions involve code that
was not written by students. However, asking questions to students
about their own code (Questions on Learners’ Code, QLCs) has
been shown to strengthen their code comprehension.

This poster presents an approach to combine notional machines
and QLCs to automatically generate personalized questions about
learners’ code based on notional machines. Our aim is to under-
stand whether notional machine–based QLCs are effective. We
conducted a pilot study with 67 students to test our approach, and
we plan to conduct a comprehensive empirical evaluation to study
its effectiveness.
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1 INTRODUCTION
Code comprehension is an important skill to acquire and is consid-
ered important for a positive learning outcome [3, 9, 10]. Learners
often struggle to understand their code, which may be a mix of their
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own production, code from textbooks, and code found online. With
the increasing capabilities and popularity of large language models,
which are able to generate code from a user–supplied prompt, this
problem becomes more and more relevant. The bar for producing
code gets lowered even more. Empowering learners with such tools
might have the consequence of decreasing the comprehension of
their own code, given that there is less need to reason about the
various aspects that pertain to the implementation. Moreover, these
models provide no guarantee that the generated code is correct:
code comprehension as a skill has never been more crucial.

To help students with code comprehension, instructors often
use Notional Machines [11], “pedagogic devices used to assist the
understanding of some aspect of programs or programming” [4].
Notional machines are used not only by instructors to explain
code, but also in activities or exams given to students. Traditionally,
the code used in these tasks is not student code. However, asking
questions to students about their own code has been shown to
strengthen their code comprehension [5]. Recent work on Questions
on Learners’ Code (QLCs) [7] explored approaches to automatically
generate questions about the code written by students. QLCs are
usually multiple–choice questions and can thus be easily graded
automatically. Multiple studies [6, 8] have shown that bad scores
on QLCs correlate with bad performance in courses.

Our approach combines QLCs and notional machines to auto-
matically generate and assess notional machine–based questions
about learners’ code. Our aim is to understand the effectiveness of
notional machine–based QLCs.

2 INSTANTIATING THE APPROACH
To study our approach we need to focus on a specific notional
machine. We picked Expression as Tree [4] because expressions have
been shown to be prevalent in the largest repository of student
code (Blackbox [1]) but neglected in textbooks [2].

We implemented a platform that instantiates our approach for
teaching expressions in Java using the Expression as Tree notional
machine. In our platform, the instructor selects expression–related
constructs such as arithmetic operators, method invocations, and
array accesses by specifying a query in a domain–specific language.
Using the code already written by learners in their programming
assignments, our platform finds expressions that include the instruc-
tor–specified constructs. Based on those expressions, it generates
personalized tasks for students to solve. Specifically, students are
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asked to translate source code into expression trees and to specify
the types of sub–expressions.

class LinAlgebra {
double[] scale(double a, double[] x) { ... }
double scaledAt(double a, double[] x,

int oneBasedPos) {

return scale(a, x)[oneBasedPos - 1] ;
}

}

Listing 1: An expression (yellow) containing a method invo-
cation and an array access, selected from student code.

Figure 1: An expression tree (top) being constructed using au-
tomatically generated nodes (bottom) which include distrac-
tors. Nodes can be annotated (left) with types (blue labels).

Figure 1 illustrates an activity automatically generated from the
expression highlighted in Listing 1. The task of the student is to
construct the tree corresponding to the given expression. They are
provided with a set of disconnected nodes. Some nodes are neces-
sary for constructing the correct tree, other nodes are distractors
our platform automatically generates. Students also need to specify
the type of each sub-expression by attaching labels to each node.

The platform also generates the reference solution: the correct
expression tree with the correct types specified for all nodes. It
compares the reference solution with the student’s submission and
produces feedback. The feedback for students highlights incorrectly
represented constructs and reports errors in the tree structure.
The feedback for the instructor includes aggregated results and
summarizes the observed mistakes tallying incorrectly represented
constructs.

3 PILOT STUDY AND FUTUREWORK
We performed a pilot study in a university–level Java programming
course with 93 students, of which 67 gave consent for their data to
be included in our study. We used the platform for two program-
ming assignments. For each assignment, each student received a
personalized task, automatically constructed from the code they
submitted as a solution to the assignment. Solving these tasks was
not mandatory for students; in the end, we received a total of 52
solutions to the notional machine-based questions. The platform

identified 25 incorrect tree nodes, which it reported in feedback for
the students and the course instructor.

Our preliminary results show that our approach is practical,
with the tool being used in classes of a university–level course
on object–oriented programming. Our next step is to conduct a
comprehensive empirical evaluation. Our evaluation will include
the quality of the automatically generated distractor nodes, the ef-
fectiveness, and the accuracy of the automatic feedback generation
for both instructors and students, as well as the correlation of the
performance of learners on the tasks with their performance in
other assessments.
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