
Using Notional Machines to Automatically Assess Students’
Comprehension of Their Own Code

Joey Bevilacqua
joey.bevilacqua@usi.ch

Software Institute, Università della Svizzera italiana
Lugano, Switzerland

Luca Chiodini
luca.chiodini@usi.ch

Software Institute, Università della Svizzera italiana
Lugano, Switzerland

Igor Moreno Santos
igor.moreno.santos@usi.ch

Software Institute, Università della Svizzera italiana
Lugano, Switzerland

Matthias Hauswirth
matthias.hauswirth@usi.ch

Software Institute, Università della Svizzera italiana
Lugano, Switzerland

ABSTRACT
Code comprehension has been shown to be challenging and im-
portant for a positive learning outcome. Students don’t always
understand the code they write. This has been exacerbated by the
advent of large language models that automatically generate code
that may or may not be correct. Now students don’t just have to
understand their own code, but they have to be able to critically
analyze automatically generated code as well.

To help students with code comprehension, instructors often
use notional machines. Notional machines are used not only by
instructors to explain code, but also in activities or exam questions
given to students. Traditionally, these questions involve code that
was not written by students. However, asking questions to students
about their own code (Questions on Learners’ Code, QLCs) has
been shown to strengthen their code comprehension.

This poster presents an approach to combine notional machines
and QLCs to automatically generate personalized questions about
learners’ code based on notional machines. Our aim is to under-
stand whether notional machine–based QLCs are effective. We
conducted a pilot study with 67 students to test our approach, and
we plan to conduct a comprehensive empirical evaluation to study
its effectiveness.

ACM Reference Format:
Joey Bevilacqua, Luca Chiodini, IgorMoreno Santos, andMatthias Hauswirth.
2024. Using Notional Machines to Automatically Assess Students’ Com-
prehension of Their Own Code. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 2 (SIGCSE 2024), March 20–
23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3626253.3635524

1 INTRODUCTION
Code comprehension is an important skill to acquire and is consid-
ered important for a positive learning outcome [3, 9, 10]. Learners
often struggle to understand their code, which may be a mix of their

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0424-6/24/03.
https://doi.org/10.1145/3626253.3635524

own production, code from textbooks, and code found online. With
the increasing capabilities and popularity of large language models,
which are able to generate code from a user–supplied prompt, this
problem becomes more and more relevant. The bar for producing
code gets lowered even more. Empowering learners with such tools
might have the consequence of decreasing the comprehension of
their own code, given that there is less need to reason about the
various aspects that pertain to the implementation. Moreover, these
models provide no guarantee that the generated code is correct:
code comprehension as a skill has never been more crucial.

To help students with code comprehension, instructors often
use Notional Machines [11], “pedagogic devices used to assist the
understanding of some aspect of programs or programming” [4].
Notional machines are used not only by instructors to explain
code, but also in activities or exams given to students. Traditionally,
the code used in these tasks is not student code. However, asking
questions to students about their own code has been shown to
strengthen their code comprehension [5]. Recent work on Questions
on Learners’ Code (QLCs) [7] explored approaches to automatically
generate questions about the code written by students. QLCs are
usually multiple–choice questions and can thus be easily graded
automatically. Multiple studies [6, 8] have shown that bad scores
on QLCs correlate with bad performance in courses.

Our approach combines QLCs and notional machines to auto-
matically generate and assess notional machine–based questions
about learners’ code. Our aim is to understand the effectiveness of
notional machine–based QLCs.

2 INSTANTIATING THE APPROACH
To study our approach we need to focus on a specific notional
machine. We picked Expression as Tree [4] because expressions have
been shown to be prevalent in the largest repository of student
code (Blackbox [1]) but neglected in textbooks [2].

We implemented a platform that instantiates our approach for
teaching expressions in Java using the Expression as Tree notional
machine. In our platform, the instructor selects expression–related
constructs such as arithmetic operators, method invocations, and
array accesses by specifying a query in a domain–specific language.
Using the code already written by learners in their programming
assignments, our platform finds expressions that include the instruc-
tor–specified constructs. Based on those expressions, it generates
personalized tasks for students to solve. Specifically, students are

1572

https://orcid.org/0009-0009-3127-0859
https://orcid.org/0000-0002-2712-9248
https://orcid.org/0000-0002-7844-2058
https://orcid.org/0000-0001-5527-5931
https://doi.org/10.1145/3626253.3635524
https://doi.org/10.1145/3626253.3635524
https://doi.org/10.1145/3626253.3635524
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626253.3635524&domain=pdf&date_stamp=2024-03-15


SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Joey Bevilacqua, Luca Chiodini, Igor Moreno Santos, & Matthias Hauswirth

asked to translate source code into expression trees and to specify
the types of sub–expressions.

class LinAlgebra {
double[] scale(double a, double[] x) { ... }
double scaledAt(double a, double[] x,

int oneBasedPos) {

return scale(a, x)[oneBasedPos - 1] ;
}

}

Listing 1: An expression (yellow) containing a method invo-
cation and an array access, selected from student code.

Figure 1: An expression tree (top) being constructed using au-
tomatically generated nodes (bottom) which include distrac-
tors. Nodes can be annotated (left) with types (blue labels).

Figure 1 illustrates an activity automatically generated from the
expression highlighted in Listing 1. The task of the student is to
construct the tree corresponding to the given expression. They are
provided with a set of disconnected nodes. Some nodes are neces-
sary for constructing the correct tree, other nodes are distractors
our platform automatically generates. Students also need to specify
the type of each sub-expression by attaching labels to each node.

The platform also generates the reference solution: the correct
expression tree with the correct types specified for all nodes. It
compares the reference solution with the student’s submission and
produces feedback. The feedback for students highlights incorrectly
represented constructs and reports errors in the tree structure.
The feedback for the instructor includes aggregated results and
summarizes the observed mistakes tallying incorrectly represented
constructs.

3 PILOT STUDY AND FUTUREWORK
We performed a pilot study in a university–level Java programming
course with 93 students, of which 67 gave consent for their data to
be included in our study. We used the platform for two program-
ming assignments. For each assignment, each student received a
personalized task, automatically constructed from the code they
submitted as a solution to the assignment. Solving these tasks was
not mandatory for students; in the end, we received a total of 52
solutions to the notional machine-based questions. The platform

identified 25 incorrect tree nodes, which it reported in feedback for
the students and the course instructor.

Our preliminary results show that our approach is practical,
with the tool being used in classes of a university–level course
on object–oriented programming. Our next step is to conduct a
comprehensive empirical evaluation. Our evaluation will include
the quality of the automatically generated distractor nodes, the ef-
fectiveness, and the accuracy of the automatic feedback generation
for both instructors and students, as well as the correlation of the
performance of learners on the tasks with their performance in
other assessments.

ACKNOWLEDGMENTS
This work was partially funded by the Swiss National Science Foun-
dation project 200021_184689.

REFERENCES
[1] Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Utting.

2014. Blackbox: A Large Scale Repository of Novice Programmers’ Activity. In
Proceedings of the 45th ACM Technical Symposium on Computer Science Education
(SIGCSE ’14). Association for ComputingMachinery, New York, NY, USA, 223–228.
https://doi.org/10.1145/2538862.2538924

[2] Luca Chiodini, Igor Moreno Santos, andMatthias Hauswirth. 2022. Expressions in
Java: Essential, Prevalent, Neglected?. In Proceedings of the 2022 ACM SIGPLAN In-
ternational Symposium on SPLASH-E (SPLASH-E 2022). Association for Computing
Machinery, New York, NY, USA, 41–51. https://doi.org/10.1145/3563767.3568131

[3] Peter Donaldson and Quintin Cutts. 2018. Flexible Low-Cost Activities to Develop
Novice Code Comprehension Skills in Schools. In Proceedings of the 13thWorkshop
in Primary and Secondary Computing Education (WiPSCE ’18). Association for
ComputingMachinery, NewYork, NY, USA, 1–4. https://doi.org/10.1145/3265757.
3265776

[4] Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Benedict du Boulay,
Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis, Andreas
Mühling, Janice L. Pearce, and Andrew Petersen. 2020. Notional Machines in
Computing Education: The Education of Attention. In Proceedings of the Work-
ing Group Reports on Innovation and Technology in Computer Science Education
(ITiCSE-WGR ’20). Association for Computing Machinery, New York, NY, USA,
21–50. https://doi.org/10.1145/3437800.3439202

[5] Rita Garcia, Katrina Falkner, and Rebecca Vivian. 2019. Instructional Frame-
work for CS1 Question Activities. In Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Education (ITiCSE ’19). As-
sociation for Computing Machinery, New York, NY, USA, 189–195. https:
//doi.org/10.1145/3304221.3319732

[6] Teemu Lehtinen, Lassi Haaranen, and Juho Leinonen. 2023. Automated Ques-
tionnaires About Students’ JavaScript Programs: Towards Gauging Novice Pro-
gramming Processes. In Australasian Computing Education Conference. ACM,
Melbourne VIC Australia, 49–58. https://doi.org/10.1145/3576123.3576129

[7] Teemu Lehtinen, Andre L. Santos, and Juha Sorva. 2021. Let’s Ask Students About
Their Programs, Automatically. In 2021 IEEE/ACM 29th International Conference
on Program Comprehension (ICPC). IEEE, Madrid, Spain, 467–475. https://doi.
org/10.1109/ICPC52881.2021.00054

[8] Teemu Lehtinen, Otto Seppälä, and Ari Korhonen. 2023. Automated Questions
About Learners’ Own Code Help to Detect Fragile Prerequisite Knowledge. In
Proceedings of the 2023 Conference on Innovation and Technology in Computer
Science Education V. 1. ACM, Turku Finland, 505–511. https://doi.org/10.1145/
3587102.3588787

[9] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship between Explaining, Tracing and Writing Skills in Introductory
Programming. ACM SIGCSE Bulletin 41, 3 (July 2009), 161–165. https://doi.org/
10.1145/1595496.1562930

[10] Greg L. Nelson, Benjamin Xie, and Andrew J. Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in
CS1. In Proceedings of the 2017 ACM Conference on International Computing
Education Research - ICER ’17. ACM Press, Tacoma, Washington, USA, 2–11.
https://doi.org/10.1145/3105726.3106178

[11] Juha Sorva. 2013. Notional Machines and Introductory Programming Education.
ACM Transactions on Computing Education 13, 2 (June 2013), 1–31. https://doi.
org/10.1145/2483710.2483713

1573

https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/3563767.3568131
https://doi.org/10.1145/3265757.3265776
https://doi.org/10.1145/3265757.3265776
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1145/3304221.3319732
https://doi.org/10.1145/3304221.3319732
https://doi.org/10.1145/3576123.3576129
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1145/3587102.3588787
https://doi.org/10.1145/3587102.3588787
https://doi.org/10.1145/1595496.1562930
https://doi.org/10.1145/1595496.1562930
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713

	Abstract
	1 Introduction
	2 Instantiating the Approach
	3 Pilot Study And Future Work
	References



