
Expressions in Java: Essential, Prevalent, Neglected?
Luca Chiodini

luca.chiodini@usi.ch
Software Institute, Università della

Svizzera italiana
Lugano, Switzerland

Igor Moreno Santos
igor.moreno.santos@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Matthias Hauswirth
matthias.hauswirth@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Abstract
expressions are the building blocks of formal languages such
as lambda calculus as well as of programming languages that
are closely modeled after it. although expressions are also an
important part of programs in languages like java, that are
not primarily functional, teaching practices typically don’t
focus as much on expressions.

we conduct both a theoretical analysis of the java language,
as well as an empirical analysis of the use of expressions in
java programs by novices, to understand the role expressions
play in writing programs. we then proceed by systematically
analyzing teaching materials for java to characterize how
they present expressions.
our findings show that expressions are an essential con-

struct in java, that they are prevalent in student code, but
that current textbooks do not introduce expressions as the
central, general, and compositional concept they are.

CCS Concepts: • Software and its engineering → Formal
language definitions; General programming languages; • So-
cial and professional topics → Computing education.

Keywords: expressions, Java, textbooks, Blackbox, trees, ed-
ucation, Abstract Syntax Tree, grammar

ACM Reference Format:
Luca Chiodini, Igor Moreno Santos, and Matthias Hauswirth. 2022.
Expressions in Java: Essential, Prevalent, Neglected?. In Proceed-
ings of the 2022 ACM SIGPLAN International SPLASH-E Sympo-
sium (SPLASH-E ’22), December 05, 2022, Auckland, New Zealand.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3563767.
3568131

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH-E ’22, December 05, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9900-5/22/12. . . $15.00
https://doi.org/10.1145/3563767.3568131

1 Introduction
In programming languages that are considered predomi-
nantly functional, expressions1 are the main building blocks
of programs. In programming languages like Java, which are
not predominantly functional, expressions seem to play a less
important role, and this is often also reflected in teaching.

Indeed, in 2008 a study carried out a Delphi process among
experts to identify important and difficult concepts in intro-
ductory programming [12]. Expressions only appear among
topics as “construct/evaluate boolean expressions” and “writ-
ing expressions for conditionals”, both ranked as very im-
portant but moderately difficult. There is no mention of the
concept of expressions being treated in a general form, in-
stead of the narrow view of logic and arithmetic.
Expressions are syntactic phrases that are constructed

compositionally. They all evaluate to values, and in statically
typed languages they all have a type. Because they are built
compositionally, we can understand a bigger expression by
decomposing it into its smaller components2. We can reason
about its type and its value by reasoning about the types
and values of its subexpressions. This recursive view of ex-
pressions is a prime example of decomposition. It allows
students to learn to evaluate or type expressions in a general
and systematic way [18].
In this paper, we set out to investigate the role of expres-

sion in Java. Specifically, we study whether:

• Expressions are essential in the Java programming
language. We analyze all possible expressions in Java,
characterizing their structure, and what’s left of Java
in the absence of expressions.

• Expressions are prevalent in Java code written by
students. We do so by mining the Blackbox dataset,
the largest repository of Java code written by students.

• Expressions are neglected in Java programming text-
books. We do so with a systematic analysis of the
contents of current textbooks.

1Authors sometimes use the words term and expression interchangeably.
Other times, they use the word term to refer to expressions that produce
values and the word expression in a more general sense [21], standing also
for phrases in other syntactic categories, including type expressions and
kind expressions. Here we use expression to refer to syntactic phrases that
produce values.
2In impure languages like Java, side-effects complicate this reasoning.

41

https://orcid.org/0000-0002-2712-9248
https://orcid.org/0000-0002-7844-2058
https://orcid.org/0000-0001-5527-5931
https://doi.org/10.1145/3563767.3568131
https://doi.org/10.1145/3563767.3568131
https://doi.org/10.1145/3563767.3568131

SPLASH-E ’22, December 05, 2022, Auckland, New Zealand Luca Chiodini, Igor Moreno Santos, and Matthias Hauswirth

Section 2 defines which Java constructs we consider as
expressions. Section 3 analyzes the grammar of the Java pro-
gramming language to show that the subset of Java involving
expressions is considerably larger than what one is typically
led to believe. Section 4 presents an empirical analysis of the
use of expressions by novices. Section 5 describes a system-
atic analysis of textbooks that teach Java to show how these
constructs are presented. Section 6 and Section 7 point out
limitations and related work, respectively. Finally, Section 8
concludes and suggests future directions.

2 Expressions in Java
The Java Language Specification3 (JLS) [13] contains both
a formal specification of the language’s concrete syntax, as
well as an informal specification of the language seman-
tics. The language specification categorizes expressions into
the following six syntactic forms: (i) expression names, (ii)
primary expressions, (iii) unary operator expressions, (iv)
binary operator expressions, (v) ternary operator expres-
sions, and (vi) lambda expressions. This categorization is too
coarse-grained for the purpose of our study. For the analyses
in Sections 4 and 5 we need to define exactly which constructs
of the language we are considering as expressions, and we
need to define their structure.

2.1 Grammar is Not Enough to Identify Constructs
The grammar productions that determine the concrete syn-
tax of the language are not good candidates to be used as
language constructs. A language construct may have mul-
tiple syntactic representations and thus it may correspond
to multiple grammar productions (e.g., array instances may
be created with or without array initializers, which affects
whether or not they contain subexpressions denoting the
array dimensions). A grammar production may also corre-
spond to multiple language constructs whenmore contextual
information is needed to determine the exact construct. For
example, a simple name can be a local variable access or a
field access depending on the context in which it occurs. A
grammar production may even correspond to only part of a
language construct, which allows for the reuse of a grammar
production in the definition of different language constructs.
Moreover, grammar productions are sometimes built with
the purpose of enforcing associativity and precedence rules.
In essence, the concrete syntax of a language is not the right
level of abstraction to define its constructs. The level of ab-
straction that we are looking for is captured by the abstract
syntax of a language.

The abstract syntax of Java is not defined in the language
specification, so we will consider the one defined by Eclipse’s
Java Development Tools (JDT) [24]. Although JDT is closely
modeled after the language specification, it diverges a little

3In this paper, we are considering Java 11 (a Long-Term Support version),
excluding modules and annotations.

from it, mostly for practical implementation reasons. For ex-
ample, it represents deeply nested expressions of the form L
op R op R2 op R3, where the same binary operator appears
between all the operands, with one AST (Abstract Syntax
Tree) node holding all the operands. The language constructs
that we will consider to be expressions mostly correspond
to JDT’s AST nodes that are subtype of Expression, with
small modifications whenever we found aspects that diverge
from the language specification.

2.2 Java Expression Constructs
For the analyses in Sections 4 and 5 we need an exhaustive
and unambiguous definition of expression constructs in Java.
We provide this in Table 1. Each row names a language
construct, refers to the main JLS section where it is discussed,
and specifies its structure. We represent the structure of a
construct with a grammar.
EBNF Symbols
The bold symbols follow the conventions of EBNF:
•
[[[
a
]]]
denotes that a is an optional part of the construct;

•
{{{
a
}}}
denotes the absence or presence of one or more

occurrences of a in the construct;
• a

������ b denotes the presence of either a or b in the construct
(grouped where needed with

(((
. . .

)))
).

Java Tokens
The colored tokens are used to denote tokens of the
Java language.

Subexpressions
The meta-variable 𝑒 denotes a subexpression. Some con-
structs restrict one of their subexpressions to only vari-
ables (JLS 15.26), represented as 𝑒𝑣𝑎𝑟 , which according
to the specification can be “named variables” (e.g., local
variables) or “computed variables” (e.g., field accesses and
array accesses). In terms of the constructs defined in Ta-
ble 1, these are:
• Id - Simple Variable Access;
•
[[[(((
𝑒
������ T𝑟))) .]]]Id - Field Access;

•
[[[
T𝑟 .

]]]
super.Id - Super Field Access;

• 𝑒[𝑒] - Array Access.
𝑒𝑣𝑎𝑟 is used in the left-hand side of an Assignment, as an
operand of a Postfix Expression, and as an operand of
some Prefix Expressions (the Prefix Increment / Decre-
ment Expression (JLS 15.15.[1-2])).

Auxiliary Productions
The remaining MetaVariables (described in Table 2) are
auxiliary grammar productions, mostly corresponding to
productions in the JLS grammar with some simplifications.
Some constructs in this list compound various parts of

the language as described in the JLS. In particular, Simple
Variable Access may be an access to a local variable or a
parameter. A Field Access may be an access to an instance
variable, a class variable, or an enum constant. Another ex-
ample is Class Instance Creation, which may be the creation

42

Expressions in Java: Essential, Prevalent, Neglected? SPLASH-E ’22, December 05, 2022, Auckland, New Zealand

of a class instance, an anonymous class instance, or even a
qualified class instance.

Notice that array initializers (JLS 10.6) are not expressions.
Even though they are used to instantiate arrays (in a field
or local variable declaration, or as part of an Array Instance
Creation expression), they cannot by themselves be evalu-
ated to produce a reference to an array instance. Thus, they
cannot be used wherever a value of an array type is expected.
We also do not consider parenthesized expression (JLS 15.8.5)
as a separate expression construct because they only affect
the order of evaluation4.

3 What’s left of Java without Expressions?
One could assume that there is much more to Java than
expressions, and that expressions are not exactly the most
important construct of an imperative, object-oriented lan-
guage like Java. Java is a large complex language that, like
many languages, evolved by accumulating more constructs
over the years. Thus, although there are many constructs
that are expressions, perhaps there are manymore constructs
that are not expressions and expressions in Java are really
not that important?

In this section, we answer that question by looking at what
is left of Java if we remove all expressions. We perform this
analysis based on the grammar of Java 95 using ANTLR [20].
In Java, it is possible to determine unambiguously if a pro-
gram contains an expression (but not to determine which
exact construct!) simply by looking at which productions of
the grammar were used to construct its parse tree (concrete
syntax tree)6.
We identify a set of grammar productions 𝑃𝑒 containing

the productions introduced in Chapter 15 (Expressions) of the
language specification with the addition of ExpressionName,
as described in Section 15.2 (Forms of Expressions) of the
specification. The set 𝑃𝑒 has the important property that a
program contains an expression iff its parse tree (concrete
syntax tree) contains a node corresponding to one of the
productions in 𝑃𝑒 .

We then use the set 𝑃𝑒 and its complement set 𝑃𝑒 ′, which
contains all the productions in the grammar except for the
productions in 𝑃𝑒 , to devise the program in Listing 1. This
program is interesting because to construct its parse tree,

4Except for a corner case whereby -2147483648 and -9223372036854775808L
are legal but -(2147483648) and -(9223372036854775808L) are illegal because
those two decimal literals are allowed only as an operand of the unary minus
operator.
5We use Java 9 here instead of Java 11 because it is the latest version for
which ANTLR provides a grammar with productions closely mirroring
those of the grammar described in the language specification.
6That may not be the case for other programming languages. The syntax of
a construct may not be enough to determine its nature. That determination
may require additional contextual information. The meaning of a name in
Java, for example, may depend on the context of its occurrence. But those
ambiguous names are captured by the production AmbiguousName and
they can only happen as part of an expression name.

package p;
import java.util.*;
import java.util.List;
import static java.lang.Math.log;
import static java.lang.Math.*;
public abstract class C<T> extends Object

implements RandomAccess {
private interface I extends Formattable {

public int[][] a = {{}, {}};
abstract <E extends Formattable>

void m() throws Exception;
}
enum E { E1(); }
static {}
{}
public List<? extends T>[][] b;
public C(float a, String b) { this(); }
public C() {

l: ;
for (int i;;) { break; }
for (int i;;) { continue; }

}
private <A extends C<T> & Formattable>

void n(C<T> this) {
final List<int[]> v;
try {} catch (Exception e) {} finally {}
return;

}
}

Listing 1. All that’s left of Java without expressions: Source
code that compiles and uses all the Java grammar produc-
tions coverable without expressions.

one must use all productions in 𝑃𝑒
′ and none of the produc-

tions in 𝑃𝑒 . Note that the constructs in this program are not
all the constructs in the language that are not expressions:
they are, instead, all the constructs that are not expressions
and do not require expressions. A while loop, for example, is
not included even though it is not an expression, because it
requires an expression as its condition. So the program con-
tains all the constructs that can be used to write programs
without expressions. This illustrates how essential expres-
sions are when writing programs in Java. At the extreme,
this is all the Java one teaches if expressions are not taught!
That is not to say that constructs like class definitions

and interfaces are not important. In fact, they are extremely
important for programming-in-the-large [9]: defining inter-
faces between components as well as connecting and orga-
nizing smaller program components into larger programs,
applications, or systems. But expressions are still required to
carry out computational processes that use them to produce
results.

43

SPLASH-E ’22, December 05, 2022, Auckland, New Zealand Luca Chiodini, Igor Moreno Santos, and Matthias Hauswirth

Table 1. Java expression constructs. The meta-variable 𝑒 denotes subexpressions. The bold symbols follow the conventions of
EBNF. The colored tokens denote tokens of the Java language. The remaining meta-variables are described in Table 2.

Group Construct Java Spec. Structure

Class Instance Creation Class Instance Creation 15.9
[[[
𝑒.
]]]
new

[[[
<T

{{{
,T
}}}
>
]]]
T𝑟(

[[[
𝑒
{{{
, 𝑒
}}}]]]
)
[[[
Block

]]]
This This Expression 15.8.3

[[[
T𝑟 .

]]]
this

Variable

Simple Variable Access 6.5.6.1 Id

Field Access 15.11
[[[(((
𝑒
������ T𝑟))) .]]]Id

Super Field Access 15.11.2
[[[
T𝑟 .

]]]
super.Id

Method Invocation
Method Invocation 15.12

[[[(((
𝑒
������ T𝑟))) .]]] [[[<T{{{,T}}}>]]]Id([[[𝑒{{{, 𝑒}}}]]])

Super Method Invocation 15.12
[[[
T𝑟 .

]]]
super.

[[[
<T

{{{
,T
}}}
>
]]]
Id(

[[[
𝑒
{{{
, 𝑒
}}}]]]
)

Array

Array Access 15.10.3 𝑒[𝑒]

Array Instance Creation 15.10.1
new T

[[[
<T

{{{
,T
}}}
>
]]]
[𝑒]

{{{
[𝑒]

}{}{}{
[]
}}}

new T
[[[
<T

{{{
,T
}}}
>
]]]
[]

{{{
[]
}}}
ArrayInit

Type Comparison and Cast
Type Comparison 15.20.2 𝑒 instanceof T

Cast Expression 15.16 (T)𝑒

Lambda Lambda 15.27 Params ->
(((
Block

������ 𝑒)))
Method Reference

Constructor Reference 15.13 T𝑟::
[[[
<T

{{{
,T
}}}
>
]]]
new

Method Reference 15.13
(((
𝑒
������ T𝑟)))::[[[<T{{{,T}}}>]]]Id

Super Method Reference 15.13
[[[
T𝑟 .

]]]
super::

[[[
<T

{{{
,T
}}}
>
]]]
Id

Operator

Conditional Expression 15.25 𝑒 ? 𝑒 : 𝑒

Assignment 15.26 𝑒𝑣𝑎𝑟 AssignOp 𝑒

Postfix Expression 15.14.2 𝑒𝑣𝑎𝑟 PostfixOp

Prefix Expression 15.15.1 PrefixOp
(((
𝑒
������ 𝑒𝑣𝑎𝑟)))

Infix Expression 15.18.2 𝑒 InfixOp 𝑒

Literal

Boolean Literal 15.8.1 true
������ false

Character Literal 15.8.1 CharacterLiteral

Null Literal 15.8.1 null

Number Literal 15.8.1 IntegerLiteral
������ FloatingPointLiteral

String Literal 15.8.1 StringLiteral

Class Literal 15.8.2
(((
T
������ void))).class

If we partition the constructs of the language into expres-
sions, statements, and definitions, we see that these are not
three independent parts of the language, but they comple-
ment each other:

• expressions “depend” on definitions because they rely
on previously defined names and operations, unless
they only use built-in constructs;

• definitions “depend” on expressions because they are
of little use without other definitions or ultimately

expressions that use them;
• statements “depend” on expressions because their use
only makes sense in the presence of side-effecting com-
putations, which in Java are mostly carried out by
expressions.

Clearly, expressions are an essential part also of imperative
languages like Java.

44

Expressions in Java: Essential, Prevalent, Neglected? SPLASH-E ’22, December 05, 2022, Auckland, New Zealand

Table 2. Meaning of MetaVariables used in Table 1 with reference to relevant section(s) of the Java Language Specification.

MetaVariable Meaning Java Spec.
T Any Type 4.1
T𝑟 Reference Type 4.3
Block Code Block 4.2
ArrayInit Array Initializer 10.6
Id Identifier 3.8
Params Lambda Parameters 15.27.1
AssignOp Assignment Operator 15.26
PostfixOp Postfix Operator 15.14
PrefixOp Unary Operator (except cast) 15.15
InfixOp Binary Operator (except instanceof) 15.[17-24]
IntegerLiteral Integer Literal 3.10.1
FloatingPointLiteral Floating-Point Literal 3.10.2
CharacterLiteral Character Literal 3.10.4
StringLiteral String Literal 3.10.5

4 How Much Do Students Use Expressions?
So far we studied how expressions could be used in Java,
based on an analysis of the language. We have not yet ex-
plored how expressions are used in Java; in particular, how
they are used by novices. Maybe expressions are usually
small, simple, and not very prevalent in student code, so that
explicitly introducing them as a central concept for novices
is overkill? We formulated the following research questions
to drive our investigation:
RQ1 Which fraction of code consists of expressions?
RQ2 How many expression constructs are typically used in

a method?
RQ3 How large are expressions?
RQ4 How deeply nested are expressions?
RQ5 Which expression constructs are more used?
RQ6 Which expression constructs tend to be always used

in a project?

4.1 Methodology
We now describe our methodology to answer the above
questions.

4.1.1 Getting Student code. To get a corpus of student
code to analyze, we requested access to the Blackbox dataset.
The Blackbox dataset [5] is a large-scale repository of Java
code written using the BlueJ IDE. BlueJ accompanies the
popular “Objects first with Java” textbook [16]. Users, typi-
cally in their introductory programming courses, can opt-in
to anonymously send their code that can be analyzed later
by researchers.

4.1.2 Selection of Projects. As part of our analysis, we
not only need to parse Java source files, but also to resolve
name bindings: we want to know what each name refers
to. We need therefore to analyze projects that successfully
compile.

Compilations in BlueJ can happen at different granulari-
ties: a user might request (or, autocompilation might trigger)
the compilation of a single file or a whole package. While
we can determine the set of files being compiled at a given
compilation event, this set does not include “dependencies”
(e.g., the compilation might have been requested for class
C, which contains a reference to the type D: D is part of the
project and is needed to compile C, but is not included in the
set of files for which the compilation was requested).

We adopt BlueJ’s notion of a project. However, given their
use in education, projects in BlueJ cannot be equated to tra-
ditional projects in Software Engineering: they are often
long-lived, with several classes being added and deleted, and
they might contain “logically different” projects. Neverthe-
less, we include in our dataset each project only once.
Taking into account all these aspects, we gather data as

follows: out of all compilations events stored in the Blackbox
dataset, we keep only the successful ones; in the specified
time window, we consider only the most recent successful
compilation event per each project; finally, we retrieve all
the Java source files in that project at that compilation event.
Only a residual fraction (≈ 0.2%) of source files cannot be
downloaded due to internal consistency errors. We selected 7
days scattered throughout the first part of 20227 and gathered
88 408 projects, for a total of 988 883 Java source files.

Even after these careful considerations, aminority (≈ 9.4%)
of source files cannot be compiled successfully. This can be
due to a variety of reasons, of which the two main ones are
the use of external dependencies (e.g., testing frameworks,
libraries provided by textbooks and institutions) and the
presence of non-compiling files that were in the project at the
selected successful compilation event but were not involved
in the compilation (e.g., a project contains a class E that has

7Exact days were January, February, March, April, May, July and August
1st. June has been excluded due to a Blackbox server outage.

45

SPLASH-E ’22, December 05, 2022, Auckland, New Zealand Luca Chiodini, Igor Moreno Santos, and Matthias Hauswirth

Figure 1. RQ1: Fraction of tokens dedicated to expressions
per project (outliers not shown).

errors, but the compilation was requested for class C which
did not require E).

4.1.3 Non-expressions inside expressions. In a language
like Java, it is not strictly true that all the descendants of an
expression node in an Abstract Syntax Tree are themselves
expressions. We identified three cases where this happens:

• class instance creation expressions containing an anony-
mous class declaration (i.e., AnonymousClassDeclaration
as a child);

• lambda expressions containing a body (i.e., Block as a
child);

• array initializers (see the discussion in Section 2 for
the rationale).

We do not consider tokens belonging to these constructs
as expressions, given that they belong to nodes that are
not expressions. This also implies that further expressions
potentially found inside those constructs are considered
distinct expressions. As an example, the fragment of code
() -> { return 42; } contains two distinct expressions
(the lambda expression and the numeric literal); correspond-
ingly, the four tokens { · return · ; · } are not counted as
part of any expression.

4.2 Prevalence of Expressions
The first two research questions explore how prevalent ex-
pressions are in Java code. We answer RQ1 by counting the
fraction of tokens belonging to expression constructs over
all the tokens in a project. Figure 1 shows that more than
half (53%) of tokens in a median project are dedicated to
expressions, a significant amount considering the imperative
nature of the language.
Figure 2 provides a more absolute measure of the preva-

lence of expressions: the number of expression constructs
per method (RQ2). The figure shows that a typical method
contains 40 expression constructs. If we see each construct
as a Lego-style building block, this number indicates that

Figure 2. RQ2: Number of expression constructs per method
(outliers not shown).

within a single method 40 pieces (quite a significant number!)
are used and composed to express computation.
An important clarification about how we conservatively

count expressions inside methods: the task is actually subtler
than it seems at a first glance, because expressions in Java
can also appear in other contexts. The language specification
states that an expression can be declared and thus occur “in a
field initializer, in a static initializer, in an instance initializer,
in a constructor declaration, in an annotation, or in the code
for amethod”.8 We call the AST nodes corresponding to these
places “declaring nodes”. We say that the declaring node of
an expression is the closest ancestor that is a declaring node.
As a consequence, an expression 𝑒 found in the declaration
of a field 𝑓 of a class𝐶 defined inside a method𝑚, will have 𝑓
as its declaring node, not𝐶 or𝑚 (thus, it will not be counted
as “inside a method” for this statistic).

4.3 Size and Height of Expressions Trees
Expressions are recursive in nature: they can be arbitrarily
nested, or, viewed conversely, increasingly larger expressions
can be built by composing smaller elements. Do students
take advantage of this power or do they tend to write en-
tirely trivial, almost flat expressions? RQ3 and RQ4 help to
investigate these aspects.

Figure 3 shows that, on average, expressions are made of
more than 3 constructs. They are often not just the combi-
nation of two atomic expressions, as would be the case of
a simple addition between two numbers (e.g., 1 + 2, which
would have 3 constructs): they are, on average, slightly big-
ger than that. One could have expected this number to be
larger. On the one hand, it can be argued that big expressions
are difficult for a student to parse, and it is good practice to
break them down into smaller sub-expressions. On the other
hand, it is possible that novices have neither been exposed

8The Java Language Specification here is missing another context in which
expressions can occur that was revealed by our analysis. Expressions can
also occur as arguments in enum constant declarations. We intend to report
this correction to the authors of the specification.

46

Expressions in Java: Essential, Prevalent, Neglected? SPLASH-E ’22, December 05, 2022, Auckland, New Zealand

Figure 3. RQ3: Number of expression constructs per unique
expression (outliers not shown).

Figure 4. RQ4: Number of levels in expression trees (outliers
not shown).

to nor explicitly taught how expressions are composed in
general, and thus there is less composition of expressions in
their own code.
We can also study the height of expressions trees. Trees

of atomic expressions consist only of one level. Expressions
consisting of a single binary operator and two atoms (e.g., 4
+ 5) correspond to trees with 2 levels. On average, the trees
of expressions written by students have more than 2 levels
(2.19, as shown in Figure 4). This has a significant implication,
because for trees with just two levels one could try to reason
linearly about expressions, in a way that organizes them in
a list (e.g., op arg1 . . . argn). While this is not a correct way
to reason about expressions in general, it would “get the
job done” in such cases. When expression trees have more
than two levels, though, it becomes essential that students
understand the recursive structure of expressions, and that
they are able to reason about expressions as trees.

4.4 Distribution of Expression Constructs
Java has many different expression constructs, as shown in
Table 1, but they are not all equally used. Although preva-
lence does not determine importance, it is nonetheless telling

Table 3. Distribution of expression constructs.

Construct %
Simple Variable Access 25.9
Field Access 14.4
Method Invocation 13.8
Number Literal 11.4
Infix Expression 11.2
String Literal 7.8
Assignment 6.1
Array Access 2.1
Class Instance Creation 2.0
Postfix Expression 1.7
This Expression 0.9
Boolean Literal 0.7
Character Literal 0.6
Prefix Expression 0.4
Null Literal 0.3
Cast Expression 0.3
Array Instance Creation 0.3
Super Method Invocation 0.0
Conditional Expression 0.0
Type Comparison 0.0
Class Literal 0.0
Lambda 0.0
Super Field Access 0.0
Method Reference 0.0
Constructor Reference 0.0
Super Method Reference 0.0

to see which expression constructs students are actually
writing. This can suggest which parts of the language are
more frequently covered by courses and textbooks, as well
as which expression constructs appear to be essential as they
occur in almost every project.

Table 3 shows the prevalence of each expression construct:
the left column reports the construct name (as defined in
Table 1), and right column indicates the percentage of nodes
of that type over all the nodes that correspond to expression
constructs.
We note that field and simple variable accesses (that in-

clude local variables and parameters) account for a signifi-
cant fraction (40%) of all expression constructs. All literals
combined make up 21% of expression constructs. Except for
Field Access (which may or may not have an explicit target),
the most used non-atomic expression construct is Method
Invocation (14%).

These proportions, however, only tell part of the story. Cer-
tain expression constructs are consistently used in almost
every project, despite occurring sparingly within a project.
As a concrete example, it is difficult to imagine a meaning-
ful Java project without any class instance creation, and it
would be easy to gather consensus around the idea that it is

47

SPLASH-E ’22, December 05, 2022, Auckland, New Zealand Luca Chiodini, Igor Moreno Santos, and Matthias Hauswirth

Table 4. Percentage of projects containing at least one oc-
currence of a given construct.

Construct %
Field Access 93.4
Simple Variable Access 91.5
Infix Expression 88.2
Number Literal 87.4
Method Invocation 86.7
Assignment 86.1
String Literal 84.3
Class Instance Creation 72.3
Postfix Expression 54.4
Boolean Literal 36.4
Prefix Expression 33.7
Array Access 32.9
Cast Expression 30.4
Array Instance Creation 29.2
This Expression 25.3
Character Literal 24.9
Null Literal 20.0
Super Method Invocation 6.7
Conditional Expression 6.1
Type Comparison 2.9
Class Literal 1.7
Lambda 1.1
Super Field Access 0.4
Method Reference 0.2
Constructor Reference 0.2
Super Method Reference 0.0

important to teach it, but obviously that construct will not
appear nearly as frequently as variable accesses do (indeed,
class instance creations only account for 2% of expression
constructs).

Table 4 tries to capture this phenomenon. For each expres-
sion construct, we report the fraction of projects that contain
at least one occurrence of that construct.
Unsurprisingly, almost all projects contain at least one

field access (≈ 93%) and one simple variable access (≈ 92%).
Those are constructs used pervasively to read from variables
(local variables, parameters, instance and static variables).
Expressions with an infix binary operator (Infix Expression)
and assignments follow in this ranking. The literal null,
rarely needed in a well-designed program, appears at least
once every five projects (20%). Arrays are used in roughly one
third of the projects. The usage of string literals is widespread.
Finally, functional-oriented features introduced in Java 8
(Lambda expressions and method / constructor references)
are among the least used expression constructs.

Table 5. Programming textbooks included in the analysis.

Title Edition Ref.
Objects First with Java 6th [16]
Java How to Program, Early Objects 11th [8]
Java Programming 9th [11]
Big Java 7th [14]
Java - Software Solutions 9th [17]
Absolute Java 6th [22]

5 Do Textbooks Neglect Expressions?
We have seen in Sections 2 and 3 that expressions are indeed
an essential construct of the Java language, and Section 4
showed that they are prevalent in the code of programming
students. Our last question, then, is whether current Java
programming textbooks present expression constructs and
their children with descriptions and examples that indicate
a lack of generality.

5.1 Methodology
We conducted a systematic study on Java textbooks to un-
derstand the extent to which expressions are covered.

5.1.1 Book Selection. We adopted the list of textbooks
selected by [4] that include a variety of styles to teach CS1.
Our exclusion criteria are books not using Java as the primary
programming language (1 book excluded) and books whose
last edition was published more than 10 years ago (6 books
excluded). Table 5 shows the resulting list of 6 textbooks, all
retrieved at their latest available edition.

5.1.2 Analysis. We set out to analyze how Java expression
constructs are covered, reading the chapters in which they
are introduced and scrutinizing the source code used in the
related examples.
This effort aims to substantiate “anecdotal” observations

noted in prior work that “many programming teachers and
introductory textbooks do not emphasize expressions and
evaluation, exceptwhen it comes to arithmetic and logic” [10].

We therefore considered each construct from Table 1, ex-
cluding arithmetic and logical operators, atomic constructs
(such as literals) that cannot contain subexpressions (i.e.,
they are leaves in an Abstract Syntax Tree), and functional-
oriented constructs introduced only in Java 8.

For each construct, we read the chapters in textbooks that
aimed to present it. We selected such sections by looking
at the table of contents and at the index. We tried to use
our best judgement to reasonably augment these sections
to include additional ones in close proximity that contained
further examples using the construct. We acknowledge that
this might lead to missing some examples, but on the other
hand it is prohibitive to take into consideration all source
code fragments in books often longer than a thousand pages.

48

Expressions in Java: Essential, Prevalent, Neglected? SPLASH-E ’22, December 05, 2022, Auckland, New Zealand

After all, it is not our intention to blame a specific textbook
or authors, but rather to derive an overall picture.
We scanned the English text in search of misleading sen-

tences: problematic wordings that signal a loss of generality
in the presentation of an expression construct and its chil-
dren. Additionally, snippets of code showing example usages
of a construct are checked to verify whether they include at
least once a non-atomic expression for each child (so that a
reader gets exposed to children not necessarily being atomic
expressions such as literals or names).

5.2 Results
As argued earlier, a key characteristic of expressions is their
compositionality. When the text or the examples (or both)
only show narrow usages of the language, students are in-
duced to believe that these constructs offer much less flexi-
bility than what they do in reality.
Table 6 summarizes our findings. While most constructs

are properly described, Class Instance Creation is presented
in two books with problematic sentences. In general, subex-
pressions are much more neglected: 4 books do not properly
describe the target of an array access expression, 3 books
mispresent the operand of a cast expression, and again 4
books contain misleading statements about the target of a
method invocation expression. Example snippets are even
more problematic. We do not claim that textbooks should in-
troduce those constructs exhibiting intricate code snippets. It
makes perfect sense to introduce themwith simple examples,
but – as the “contrasting cases” [23] pedagogy suggests – one
should also present examples using non-atomic expressions,
to reinforce their generality.

It is instructive to read some of the sentences we classified
as misleading. For example, in the array access expression,
several textbooks mentioned that an “array name” should
go in front of the square brackets, which excludes all other
expressions that evaluate to an array reference. “The cast
operator consists of the name of a typewritten in parentheses
in front of a variable or an expression” [16] seems to imply
that variables (i.e., uses of names) are not expressions but
something different. “The new operator is used to create an
object of a class and associate the object with a variable that
names it” [22] seems to imply that class instance creation
expressions necessarily need to be the right hand side of
an assignment and cannot be used in a different way (e.g.,
as an argument of a method invocation expression). “When
you use a nonstatic method, you use the object name, a dot,
and the method name” [11], “to call a method [one uses] a
variable that contains a reference to an object” [8] both imply
that the target of a method invocation expression cannot be
anything but a simple name.
These problematic sentences might very well instill mis-

conceptions in students, such as the ones documented in [7].
For example, when a class instance creation is not taught
as an expression, students start to believe that they cannot

chain members to constructors (the misconception called
CannotChainMemberToConstructor).
Being aware of how hard it is to write a programming

textbook, we tried to be as lenient as possible while reading
them, giving books’ authors the benefit of the doubt. The
description of what is allowed as the left-hand side of an
assignment exemplifies this: we did not raise complaints
about it being described as a “variable”, in light of the fact
that the language specification also uses this word. However,
the specification also expands on this to clarify what is meant
by “variable” (which is different than what most readers
probably expect!): variables can also be “computed”, meaning
that their determination might involve the evaluation of an
arbitrarily complex expression.

6 Limitations
We do not study the most recent version of Java, which
would be Java 18 (March 2022) at the time of this writing.
Our code analysis is limited to the Long Term Support (LTS)
version 11 (September 2018), and the grammar analysis to
version 9 (September 2017). However, the language features
introduced since the LTS version 11 are barely covered in
textbooks for introductory programming.
While we collected and analyzed almost 1 million Java

source files, mitigating the bias by carefully spreading the
selection of projects across time so as to represent a mean-
ingful sample, this still constitutes only a fraction of the large
Blackbox dataset.
We did not perform a comprehensive study of all Java

textbooks. It is clearly possible that some books we did not
analyze treat expressions more thoroughly. However, we
based our selection on prior work [4], and picked those books
that focus on Java and are current (i.e., we excluded books
where their most recent edition was more than ten years
old). The analysis was carried out by a single author, which
constitutes a threat to validity.
This paper focuses exclusively on Java. Many other pro-

gramming languages are used in education, one of the most
prominent probably being Python. While we hypothesize
that our results might generalize to Python and Python text-
books, this paper does not provide any evidence to back
that up. Future work might want to replicate this study for
Python or other similar languages.

The paper focuses on an imperative language. Textbooks
for functional languages, especially those for purely func-
tional languages like Haskell or Racket BSL, will have little
risk of neglecting the treatment of expressions, given the
absence of statements and mutation and the dominance of
expressions.

7 Related Work
Our theoretical analysis of Java is based on the language spec-
ification. Another approach would be to use a well-known

49

SPLASH-E ’22, December 05, 2022, Auckland, New Zealand Luca Chiodini, Igor Moreno Santos, and Matthias Hauswirth

Table 6. For each selected expression construct and its subexpressions, the number of textbooks containing misleading
sentences about each expression and containing only atomic examples of each expression (type arguments omitted for clarity).

Construct Structure Misleading text Only atomic examples

Array Access
𝑒𝑎𝑟𝑟[𝑒𝑖𝑑𝑥] 0 -
𝑒𝑎𝑟𝑟 4 6
𝑒𝑖𝑑𝑥 0 1

Array Instance Creation new T[𝑒𝑠𝑖𝑧𝑒]
{{{
[𝑒𝑠𝑖𝑧𝑒]

}{}{}{
[]
}}}

1 -
𝑒𝑠𝑖𝑧𝑒 0 2

Assignment
𝑒𝑣𝑎𝑟 AssignOp 𝑒 0 -
𝑒𝑣𝑎𝑟 1 0
𝑒 1 0

Cast Expression (T)𝑒 0 -
𝑒 3 4

Class Instance Creation

[[[
𝑒𝑟𝑒 𝑓 .

]]]
new T𝑟(

[[[
𝑒𝑎𝑟𝑔

{{{
, 𝑒𝑎𝑟𝑔

}}}]]]
)
[[[
Block

]]]
2 -

𝑒𝑟𝑒 𝑓 (not discussed)
𝑒𝑎𝑟𝑔 0 6

Conditional Expression
𝑒𝑐𝑜𝑛𝑑 ? 𝑒 : 𝑒 0 -
𝑒𝑐𝑜𝑛𝑑 0 0
𝑒 3 4

Type Comparison 𝑒 instanceof T 0 -
𝑒 0 6

Field Access
[[[(((
𝑒
������ T𝑟))) .]]]Id 0 -

𝑒 2 6

Method Invocation

[[[(((
𝑒𝑟𝑒 𝑓

������ T𝑟))) .]]]Id([[[𝑒𝑎𝑟𝑔{{{, 𝑒𝑎𝑟𝑔}}}]]]) 0 -
𝑒𝑟𝑒 𝑓 4 6
𝑒𝑎𝑟𝑔 3 1

formally specified subset of Java, such as Featherweight
Java [15] or Middleweight Java [2]. An advantage of using
formally specified languages is that the constructs that are
expressions in those languages are unambiguously specified.
On the other hand, an approach based on either of those
two sublanguages would inevitably cover only a subset of
the language. There does exist a formalization of the full
Java semantics using the K framework [3], however it only
covers up to Java 1.4.
With a different focus, other repository-mining studies

have been conducted to investigate how programmers use
Java. Brown analyzed the Blackbox dataset to “learn how
novices use different features of the Java language” [6]. Our
work is different in that it focuses solely on expressions and
thus dives deeper in this key part of the language. Mining
open-source GitHub projects, Mazinanian et al. [19] studied
the usage of lambda expressions introduced in Java 8.
Other studies reviewed introductory programming text-

books, for instance to analyze examples of object-oriented
programming [4] and to compare and contrast pedagogies [1].

8 Conclusions
When teaching a language that is not predominantly func-
tional, one might be tempted to downplay the role of ex-
pressions. In this paper, we have shown that expressions

are an essential part of Java programs, even though Java
is not a predominantly functional language. We also saw
that expressions are heavily used in Java code written by
students. Nevertheless, current Java programming textbooks
at least partially neglect covering expressions in the appro-
priate generality and depth. We believe that future textbook
revisions may want to put more emphasis on the beautiful
compositional structure of expressions and the orthogonality
between expressions, the contexts in which they may appear,
their evaluation, and their types. Table 1 may provide a start-
ing point for a discussion of the structure of Java expressions
in future textbook revisions.
Given its potential wider interest for other studies, and

for reproducibility purposes, we publish at https://doi.org/10.
5281/zenodo.7225345 both a tool to verify the set of produc-
tions used to parse a Java program (used to create Listing 1)
and the infrastructure built to extract projects from Blackbox,
analyze Java source code to find expressions, and compute
statistics (Section 4).

Acknowledgments
We are thankful to Neil Brown for the support in working
with the Blackbox dataset.

This work was partially funded by the Swiss National
Science Foundation project 200021_184689.

50

https://doi.org/10.5281/zenodo.7225345
https://doi.org/10.5281/zenodo.7225345

Expressions in Java: Essential, Prevalent, Neglected? SPLASH-E ’22, December 05, 2022, Auckland, New Zealand

References
[1] Byron Weber Becker. 2002. Pedagogies for CS1: A Survey of

Java Textbooks. manuscript, http://www. math. uwaterloo. ca/∼ bw-
becker/papers/javaPedagogies. pdf, last visited (2002), 03–01.

[2] G. M. Bierman, M. J. Parkinson, and A. M. Pitts. 2003. MJ: An Imper-
ative Core Calculus for Java and Java with Effects. Technical Report
UCAM-CL-TR-563. University of Cambridge, Computer Laboratory.
https://doi.org/10.48456/tr-563

[3] Denis Bogdănaş. 2015. A Complete Semantics for Java. Ph. D. Disserta-
tion. Alexandru Ioan Cuza University of Iaşi.

[4] Jürgen Börstler, Mark S. Hall, Marie Nordström, James H. Paterson,
Kate Sanders, Carsten Schulte, and Lynda Thomas. 2010. An Eval-
uation of Object Oriented Example Programs in Introductory Pro-
gramming Textbooks. ACM SIGCSE Bulletin 41, 4 (Jan. 2010), 126–143.
https://doi.org/10.1145/1709424.1709458

[5] Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and
Ian Utting. 2014. Blackbox: A Large Scale Repository of Novice
Programmers’ Activity. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education (SIGCSE ’14). Association
for Computing Machinery, New York, NY, USA, 223–228. https:
//doi.org/10.1145/2538862.2538924

[6] Neil C. C. Brown, Pierre Weill-Tessier, Maksymilian Sekula, Alexandra-
Lucia Costache, and Michael Kölling. 2022. Novice Use of the Java
Programming Language. ACM Transactions on Computing Education
(July 2022). https://doi.org/10.1145/3551393

[7] Luca Chiodini, Igor Moreno Santos, Andrea Gallidabino, Anya
Tafliovich, André L. Santos, and Matthias Hauswirth. 2021. A Curated
Inventory of Programming LanguageMisconceptions. In Proceedings of
the 26th ACMConference on Innovation and Technology in Computer Sci-
ence Education V. 1 (ITiCSE ’21). Association for Computing Machinery,
New York, NY, USA, 380–386. https://doi.org/10.1145/3430665.3456343

[8] Paul J. Deitel and Harvey M. Deitel. 2018. Java: How to Program Early
Objects (11th edition ed.). Pearson, New York.

[9] Frank DeRemer and Hans Kron. 1975. Programming-in-the Large
versus Programming-in-the-Small. ACM SIGPLAN Notices 10, 6 (April
1975), 114–121. https://doi.org/10.1145/390016.808431

[10] Rodrigo Duran, Juha Sorva, and Otto Seppälä. 2021. Rules of Program
Behavior. ACM Transactions on Computing Education 21, 4 (Nov. 2021),
33:1–33:37. https://doi.org/10.1145/3469128

[11] Joyce Farrell. 2019. Java Programming (nineth edition ed.). Cengage,
Australia United States.

[12] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey Herman, Lisa Kacz-
marczyk, Michael C. Loui, and Craig Zilles. 2008. Identifying Important
and Difficult Concepts in Introductory Computing Courses Using a
Delphi Process. In Proceedings of the 39th SIGCSE Technical Symposium
on Computer Science Education (SIGCSE ’08). ACM, New York, NY, USA,
256–260. https://doi.org/10.1145/1352135.1352226

[13] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. 2000. The Java
Language Specification. Addison-Wesley Professional.

[14] Cay S. Horstmann. 2019. Big Java. Early Objects (seventh edition ed.).
John Wiley & Sons, Inc, Hoboken, NJ.

[15] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Feather-
weight Java: A Minimal Core Calculus for Java and GJ. ACM Transac-
tions on Programming Languages and Systems 23, 3 (May 2001), 396–450.
https://doi.org/10.1145/503502.503505

[16] Michael Kölling and David Barnes. 2017. Objects First With Java: A
Practical Introduction Using BlueJ (sixth ed.). Pearson.

[17] John Lewis and William Loftus. 2017. Java Software Solutions: Founda-
tions of Program Design (ninth edition ed.). Pearson, NY, NY.

[18] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011.
Do Values Grow on Trees?: Expression Integrity in Functional Pro-
gramming. In Proceedings of the Seventh International Workshop on
Computing Education Research - ICER ’11. ACM Press, Providence,
Rhode Island, USA, 39. https://doi.org/10.1145/2016911.2016921

[19] Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny
Dig. 2017. Understanding the Use of Lambda Expressions in Java.
Proceedings of the ACM on Programming Languages 1, OOPSLA (Oct.
2017), 1–31. https://doi.org/10.1145/3133909

[20] T. J. Parr and R. W. Quong. 1995. ANTLR: A Predicated-LL(k) Parser
Generator. Software: Practice and Experience 25, 7 (1995), 789–810.
https://doi.org/10.1002/spe.4380250705

[21] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT
Press, Cambridge, Mass.

[22] Walter Savitch and Kenrick Mock. 2015. Absolute Java (6th edition
ed.). Pearson, Boston.

[23] Daniel L. Schwartz, Catherine C. Chase, Marily A. Oppezzo, and
Doris B. Chin. 2011. Practicing versus Inventing with Contrast-
ing Cases: The Effects of Telling First on Learning and Transfer.
Journal of Educational Psychology 103, 4 (2011), 759–775. https:
//doi.org/10.1037/a0025140

[24] JDT/Core Team. 2022. JDT Core Component | The Eclipse Foundation.
https://www.eclipse.org/jdt/core/index.php.

51

https://doi.org/10.48456/tr-563
https://doi.org/10.1145/1709424.1709458
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/3551393
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/390016.808431
https://doi.org/10.1145/3469128
https://doi.org/10.1145/1352135.1352226
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/2016911.2016921
https://doi.org/10.1145/3133909
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1037/a0025140
https://doi.org/10.1037/a0025140

	Abstract
	1 Introduction
	2 Expressions in Java
	2.1 Grammar is Not Enough to Identify Constructs
	2.2 Java Expression Constructs

	3 What's left of Java without Expressions?
	4 How Much Do Students Use Expressions?
	4.1 Methodology
	4.2 Prevalence of Expressions
	4.3 Size and Height of Expressions Trees
	4.4 Distribution of Expression Constructs

	5 Do Textbooks Neglect Expressions?
	5.1 Methodology
	5.2 Results

	6 Limitations
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

