
Teaching Programming with Graphics:
Pitfalls and a Solution

Luca Chiodini
luca.chiodini@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Juha Sorva
juha.sorva@aalto.fi

Department of Computer Science,
Aalto University
Espoo, Finland

Matthias Hauswirth
matthias.hauswirth@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Abstract
Many introductory programming courses employ graphics
libraries that promote engagement and enable fun visuals.
However, student excitement over graphical outputs is not a
guarantee of conceptual understanding of programming, and
graphics may even distract from intended learning outcomes.
Our contribution is twofold. First, we analyze a selection of
existing graphics libraries designed for novice programmers.
We consider how these libraries foster clean decomposition,
direct students’ attention to key content, and manage com-
plexity; we find shortcomings in these respects. These short-
comings involve the libraries’ support for global coordinates
and external graphics, as well as their rich APIs; we argue
that these features, although powerful, are also potential
pitfalls in student learning. Second, we present the design of
a new graphics library, PyTamaro, which avoids the pitfalls
with a minimalist design that eschews coordinates; we also
outline a pedagogical approach that builds on PyTamaro’s
strengths and deliberate limitations. We briefly discuss PyTa-
maro’s trade-offs in comparison to coordinate-based libraries.
The work reported here paves the way for future empirical
evaluations of PyTamaro and associated teaching practices.

CCS Concepts: • Social and professional topics → Com-
puter science education.

Keywords: education, graphics, library, visual, novices, pro-
gramming, decomposition

ACM Reference Format:
Luca Chiodini, Juha Sorva, and Matthias Hauswirth. 2023. Teaching
Programming with Graphics: Pitfalls and a Solution. In Proceedings
of the 2023 ACM SIGPLAN International Symposium on SPLASH-E

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH-E ’23, October 25, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0390-4/23/10. . . $15.00
https://doi.org/10.1145/3622780.3623644

(SPLASH-E ’23), October 25, 2023, Cascais, Portugal. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3622780.3623644

1 Introduction
“Why should computers in schools be confined to computing
the sum of the squares of the first twenty odd numbers?” com-
plained Papert and Solomon back in 1971 [39]. As a rem-
edy, they proposed that students program a ‘turtle’ that can
draw onscreen. Turtle graphics are a famous example of
a broader phenomenon: teachers seek to engage beginner
programmers with graphics. Besides turtle graphics, many
software tools have been built for this purpose, including
programmable sprites in block-based environments, soft-
ware libraries with graphical outputs, beginner-friendly GUI
toolkits, and so on (see, e.g., [19, 33]).

Despite the spread of such approaches over the last decades,
many textbooks and courses still follow a very traditional
curriculum [44] that introduces the syntax and semantics
of a programming language through programs that produce
text akin to “Hello, world!” or perform basic numerical cal-
culations. Such programs have been criticized by many as
“tedious and dull” [19]. Nevertheless, many educators stick
with them, perhaps because they perceive more interesting
exercises as being too difficult for novices.

For many students, graphics are more engaging than text
and numbers—and engagement has been long sought by ed-
ucators, as it is robustly correlated with improved learning
outcomes [48]. However, the complexity of a graphics library
may diminish the educational impact of graphical program-
ming or even cause novices to fail. For a graphics library
to be a realistic choice for teaching complete beginners, it
needs to have Manageable Complexity. This is the first of
three guiding goals that we strive towards in this article.
For some purposes, such as getting children intrigued

about computing in general, engagement may be almost an
end to itself. On the other hand, graphical approaches to
programming education are sometimes criticized as overly
playful and not focused enough on the core of computing;
engagement alone is not enough for learning key comput-
ing concepts and programming skills. Moreover, there is
evidence, for instance, that students may engage with the
graphical affordances of Scratch in ways that are exciting
to them but unproductive for programming skill develop-
ment (e.g., [17, 50]). Ideally, beginner programmers would

1

https://orcid.org/0000-0002-2712-9248
https://orcid.org/0009-0003-1727-1317
https://orcid.org/0000-0001-5527-5931
https://doi.org/10.1145/3622780.3623644
https://doi.org/10.1145/3622780.3623644

SPLASH-E ’23, October 25, 2023, Cascais, Portugal Luca Chiodini, Juha Sorva, and Matthias Hauswirth

engage enthusiastically with content that is aligned with
intended learning outcomes. This kind of desirable engage-
ment, which minimizes the time when learners’ direct their
attention to superficial concerns, is the second of our guiding
goals. We dub it Meaningful Engagement.
What qualifies as a key computing concept is subject to

debate, but there is little dispute over the importance of
programmers learning how to decompose problems. Decom-
position is an essential skill that enables humans to solve
non-trivial problems; alongside the related skill of abstrac-
tion, decomposition is also central to “computational think-
ing” [51]. As Brennan and Resnick state, “abstracting and
modularizing, which we characterize as building something
large by putting together collections of smaller parts, is an
important practice for all design and problem solving” [6].

However, and as the Software Engineering community re-
alized a long time ago, not every way to divide a problem into
subproblems—a big ‘system’ into ‘subsystems’ or ‘modules’—
is equally good. In 1974, Stevens et al. stressed the paramount
importance of structured design: “the fewer and simpler the
connections between modules, the easier it is to understand
each module” [47]. Around the same time, Parnas explained
how one should modularize a system so that modules “re-
veal as little as possible about their inner workings” [40].
Our third guiding goal in this article is that students get to
practice Clean Problem Decomposition early on. We argue
that learners at various levels of the educational system may
reap the benefits of learning decomposition skills.
Putting together all of the above, we can summarize our

contribution as follows.We explore the design space of graph-
ics libraries for introductory programming courses that em-
ploy a textual programming language, with a particular em-
phasis on our guiding goals: Clean Problem Decomposition,
Meaningful Engagement, and Manageable Complexity. Sec-
tion 2 below provides an overview of existing graphics li-
braries. In Section 3, we explore those existing solutions to
answer our first research question:

RQ1 Given the above guiding goals, what pitfalls are there
in using existing graphics libraries for introductory pro-
gramming education?

Multiple pitfalls are revealed, so we ask how to avoid them:

RQ2 How can a graphics library be designed to support Clean
Problem Decomposition, Meaningful Engagement, and
Manageable Complexity?

Section 4 presents our answer to this question, a graphics
library named PyTamaro; we describe PyTamaro’s design
rationale as well as a teaching approach that builds on the
library’s strengths and that we have anecdotal experience
of. Section 5 covers some limitations of our work. Finally,
Section 6 considers future empirical evaluations of PyTamaro
and concludes the article.

2 Related Work: Graphics for Education
Many software libraries have been developed to support
graphics in introductory programming classes. We will char-
acterize this design space by reviewing three ‘families’ of
libraries. Wewill restrict our focus on 2D graphics, on textual
languages, and on tools designed with education in mind;
already within this scope, there is radical variation in designs.
GUI libraries, game engines, and blocks-based programming
are thus excluded here. Some of the libraries mentioned be-
low do support some form of user interaction, but that aspect
is out of scope for present purposes.
To illustrate, we pick a representative library from each

family and use it to write a tiny Python program that creates
the time-honored example graphic of a ‘house’ as shown in
Figure 1. The ‘house’ consists of a single ‘floor,’ represented
by a square, atop which sits the ‘roof,’ an equilateral triangle.

Figure 1. Abelson and diSessa’s [1] house, colorized.

2.1 Graphics on a Canvas with Coordinates
School geometry introduces the two-dimensional Cartesian
coordinate system, which describes a point (𝑥,𝑦) by its hori-
zontal and vertical offset from the origin (0, 0) of the plane.
Indeed, many graphics libraries used for teaching novices
are centered around the Cartesian coordinate system: shapes
are drawn on an empty canvas of a certain size by spec-
ifying their positions with coordinates. Examples include
Java2D [29], acm.graphics, and the Portable Graphics Li-
brary derived from the latter [43],

Listing 1 draws a housewith cs1graphics [16] for Python,
another example of a library in this family. We create an
empty canvas (implicitly of size 200 × 200) and then add
shapes to it, specifying their absolute positions in a global
coordinate system.

paper = Canvas()
floor = Square(100)
floor.moveTo(50, 137)
paper.add(floor)
roof = Polygon([Point(0, 87), Point(50, 0),

Point(100, 87)])
paper.add(roof)

Listing 1. Drawing a house with the cs1graphics library.

Not all libraries in this family require calling methods on
objects. For example, Designer [24] creates images with plain
function calls and modifies their state with subscripts, as in
floor['x'] = 50.

2

Teaching Programming with Graphics: Pitfalls and a Solution SPLASH-E ’23, October 25, 2023, Cascais, Portugal

2.2 Turtle Graphics
Turtle graphics was introduced by Papert [38] as a simple
way to drawwith computers as early as in elementary school.
It is based on a metaphor of the programmer controlling a
‘turtle’ that carries a ‘pen.’ The turtle follows a sequence of
commands, leaving a trace that results in a drawing.
Originally introduced in Logo, turtle graphics have be-

come widespread in introductory programming. Libraries
exist for several programming languages, and some are even
included in languages’ standard libraries. This is the case for
Python’s turtle, with which we draw the house in Listing 2.

for _ in range(4):
forward(100)
right(90)

left(60)
for _ in range(3):

forward(100)
right(120)

Listing 2. Drawing a house with Python’s turtle module.

Commands express movements relative to the turtle’s cur-
rent state. The effect of a command such as forward(100)
depends on the turtle’s location and direction.

2.3 Graphics as Values
A different approach was proposed in 1982 by Henderson
[22], who introduced a purely functional way to describe
pictures. Finne and Peyton Jones [14] later proposed the idea
of composing pictures from primitives using what they called
combinators. Some of these principles have been adopted
in the textbook How to Design Programs [11]: an “image
teachpack” [4] accompanies the book and is available as
a Racket library. Felleisen and Krishnamurthi [12] discuss
how the teachpack enables students to construct algebraic
expressions that “consume and compute pictorial values.”
Libraries in this family treat images as values. There are

functions that produce primitive shapes, such as rectangles
and circles. Other functions combine images into more com-
plex ones; for example, an image may be placed above or
beside another. Images can only be composed, not mutated.

The libraries in this family tend to be written for languages
that embrace functional programming. In Listing 3, we build
the house with Pyret, whose syntax is similar to Python’s.

floor = square(100, "solid", "yellow")
roof = triangle(100, "solid", "red")
house = above(roof, floor)

Listing 3. Drawing a house with Pyret’s image module.

3 Pitfalls in Existing Libraries
In this section, we answer our first research question: what
pitfalls are there in using existing graphics libraries in the
light of our guiding goals (Clean Problem Decomposition,
Meaningful Engagement, and Manageable Complexity)?

The results of our analysis are summarized in Table 1 and
explained below. In the subsections that follow, we discuss
one guiding goal at a time, identifying pitfalls related to that
goal. For each pitfall identified, we argue why its presence
in a graphics library for novices can hinder reaching the
intended goal. Our analysis draws on the research literature
on computing education and is complemented by anecdotal
evidence from teaching introductory programming.

3.1 Clean Problem Decomposition
Problem decomposition is at the core of “computational
thinking” [51]. Decomposition—along the corresponding
composition of sub-solutions to solve an overall problem—
has been considered “the essence of programming” [36].
However, a look a student programs reveals that achieving
proper decomposition is quite difficult. For example, Scratch
projects often exhibit decomposition into substructures that
are not coherent [35]. These findings also extend to codewrit-
ten by novices in text-based programming languages [28].

For decomposition to be effective, subproblems need to be
independent. A subproblem that is tightly coupled to other
subproblems cannot be solved in isolation. The main promise
of decomposition is being able to reason locally and focus
on each subproblem separately. Without independence, we

Table 1. Pitfalls identified in the libraries which represent
the three families. ✗ means a pitfall is present. (✗) denotes
partiality.

Guiding Goal Pitfall C
oo

rd
s
on

C
an

va
s

c
s
1
g
r
a
p
h
i
c
s

Tu
rt
le

G
ra
ph

ic
s

Py
th
on

’s
t
u
r
t
l
e

G
ra
ph

ic
s
as

V
al
ue

s
Py

re
t’s
i
m
a
g
e

Clean Problem
Decomposition

Global coordinates ✗ (✗)
Turtle’s state ✗
Local coordinates ✗ ✗
Scaling ✗ ✗

Meaningful
Engagement

External graphics ✗ ✗
Rich API (✗) (✗) ✗

Manageable
Complexity

Extra lang. features ✗
Mutability ✗

3

SPLASH-E ’23, October 25, 2023, Cascais, Portugal Luca Chiodini, Juha Sorva, and Matthias Hauswirth

have to keep multiple interacting subproblems in mind si-
multaneously, which increases our cognitive load. Good de-
composition is also closely linked to abstraction and reuse:
if we create the right abstraction (e.g., a function) to solve a
(sub)problem, we can reuse the abstraction when the solution
is needed again.

Learners thus need to be helped to learn this difficult skill.
They need opportunities to practice decomposition; we argue
that it is a good idea to put learners in situations where the
benefits of clean decomposition are clear and it is difficult or
even impossible to exploit ‘ugly hacks.’

What pitfalls are there in existing graphics libraries when
teaching how to cleanly decompose a problem? We find four:
global coordinates, global state, local coordinates, and scaling.
As we discuss each pitfall in turn below, we again resort

to the ‘house’ from Figure 1 as a small-scale running exam-
ple. The problem of drawing the house features two smaller
subproblems: drawing the roof and drawing the floor; their
solutions can be combined to solve the overall problem.

3.1.1 Global coordinates break independence. Con-
sider Listing 1, which draws the house on a canvas. At first
glance, it may seem that the floor and the roof are constructed
quite independently from each other before being separately
added to the canvas. There is one caveat, however: the graph-
ics are positioned using offsets in a global coordinate system.

Coordinates such as (50, 137) implicitly depend on the
origin of the plane, a globally shared ‘zero’ that acts as a
reference point. The issue becomes evident when one needs
to change a feature in a subproblem. Consider an increase in
the height of the roof, from 87 to 120 for example. This also
requires a change to the position of the floor, whose center
should be moved to (50, 170) instead of (50, 137).

Decomposition should produce subproblems that are inde-
pendent from each other. We would like the roof problem to
be independent from the floor problem, so that we get local
reasoning: we do not want to worry about the roof when
writing the code for the floor. A global coordinate system
breaks this promise, a pitfall shared by all the libraries in the
family that adopts global coordinates (Section 2.1).

3.1.2 Turtle state also breaks independence. One of the
original goals of “turtle geometry” [38] was to eliminate the
problems caused by global coordinates. The turtle provides a
local perspective to drawing. Commands like “move forward”
and “turn right” represent movements and rotations relative
to the turtle’s current position and direction. This makes it
easier to extract the first three lines of Listing 2 and create
a reusable procedure to draw a square. Similarly, the last
three lines can be extracted into a procedure that draws an
equilateral triangle.
We would now like to use these smaller procedures as

“building blocks in more complex drawings,” as Abelson
and diSessa advocated [1]. Things are not so simple, how-
ever, as shown by the extra command on Line 4 of Listing 2:

left(60). To ‘connect’ the subproblems—to compose the
graphics—we need to know the turtle’s position and head-
ing after executing the first procedure; we may also need to
adjust that state (with “interface steps” [1]) before execut-
ing the second procedure. This happens because the turtle’s
position, heading, and pen status constitute a global state.
The turtle’s state is not local to every procedure; it is shared,
mutated, and kept across procedures. Global state violates
the independence that we strive for through decomposition.
Harvey [21] pointed out that programs are “much easier

to read and understand if each procedure can be understood
without thinking about the context in which it’s used.” How-
ever, turtle functions may only compose cleanly with extra
instructions (the “interface steps”), adding to the program-
mer’s burden. Harvey’s (ibid.) partial patch for this issue is
to have a higher-order procedure reset the turtle’s heading.
While an experienced programmer might consistently apply
this patch, it seems unlikely that novices could and would.
And in any case, one still needs to deal with the rest of the
turtle’s state, which includes its position.

3.1.3 Local coordinates are prone to misuse. Listing 3
exhibits clean decomposition: the roof and floor are created
independently, then combined as desired into a house. In
this simple example, above does the job: it succinctly con-
veys the programmer’s intent. However, not all graphics
consist of shapes next to each other. As a silly variation on
the theme, imagine the same house with the roof collapsed
and lying in front of the ground floor. With Pyret’s library,
overlay-align("center", "bottom", roof, floor)
does the trick, specifying that the composite image should
have the two originals with their bottom edges aligned at the
center. Overlaying enables a huge class of more interesting
graphics to be created.
One might rightfully object that these combinators are

still not general enough. And indeed, for maximal freedom in
overlaying images, Pyret’s library also offers multiple combi-
nators that involve exact offsets. For instance, overlay-xy
“initially lines up the two images upper-left corners and then
shifts img2 to the right by dx pixels, and then down by
dy pixels.” Some curricula encourage beginners to use such
functions that operate on local (relative) coordinates. For
example, students might need them to place a rocket at a
certain height onto a scene [12].
Unfortunately, anecdotal evidence shows that students

who know of these functions frequently misuse them, wield-
ing themwhere simpler combinators would suffice. An image
can be used as a background ‘scene’ with other images over-
laid on it at specific positions. This effectively reintroduces
a shared origin, mimicking the global coordinate system.

The issue may also extend to teaching materials. Listing 4
exhibits an example1 taken from an Hour of Code activity by

1Step 11 of https://www.bootstrapworld.org/materials/fall2023/en-us/
lessons/hoc-winter-parley/index.html.

4

https://www.bootstrapworld.org/materials/fall2023/en-us/lessons/hoc-winter-parley/index.html
https://www.bootstrapworld.org/materials/fall2023/en-us/lessons/hoc-winter-parley/index.html

Teaching Programming with Graphics: Pitfalls and a Solution SPLASH-E ’23, October 25, 2023, Cascais, Portugal

Bootstrap, a leading curriculum that embraces Pyret. Despite
the availability of a function that would align the two images
on their left edge, the activity suggests that learner use coor-
dinates. This couples the alignment location with the size of
the two images, marring the otherwise clean decomposition.

eye = circle(30, "outline", "black")
pupil = circle(10, "solid", "black")
googly-eye = put-image(pupil, 10, 30, eye)

Listing 4. A googly eye with local coordinates, created with
Pyret’s image library.

3.1.4 Scalable graphics may interfere with abstrac-
tion. Devlin argues that “computing is all about constructing,
manipulating, and reasoning about abstractions” [9]. How-
ever, moving from the concrete to the abstract is a significant
challenge. For instance, students have trouble defining func-
tions when solving problems that require abstraction [20].

Graphical programs offer many opportunities for abstrac-
tion. As an example, size is one obvious aspect of a house that
we may wish to parameterize—to abstract. Students often
want to experiment rapidly and repeatedly change the size
of a house they just drew. In all the programs of Section 2, a
change in this single aspect necessitates multiple changes to
code: Listing 1 needs seven edits, Listings 2 and 3 two each.
On a small scale, students experience what professionals call
an issue of maintainability.

Students may then be encouraged to abstract by defining
a general function that creates a house of a given size or
by extracting the size into a constant used throughout the
program. Is it really true that this laborious refactoring is
needed? Not necessarily. Pyret’s image module contains a
function to scale an image; cs1graphics allows zooming the
entire canvas. The availability of such functions undermines
clean abstractions: instead of parameterizing their houses
with a size, learners can just insert a new function call at the
end to perform scaling and produce the desired visuals. No
abstraction skill is then needed or practised; this is the sort
of ‘hack’ that we would like to prevent.

3.2 Meaningful Engagement
3.2.1 External graphics may lower motivation. When
a student creates their first graphical program from scratch,
their sense of empowerment is often palpable: it’s not too
hard to write a program that displays images, not just char-
acters in a terminal! Without too much effort, the student
draws a house or a tree or a flag and declares victory.
That joy may quickly give way to disappointment when

the student realizes how hard it is to build graphics from basic
shapes and make them look decent compared to the slick
artwork they see every day on their smartphone. Suddenly
the house doesn’t look that nice.

In order to recover the initial excitement, or perhaps to
quickly enable non-trivial graphics for a simulation or game,
teachers often explain how students can import external im-
ages into their creations. For example, cs1graphics allows
this through the Image class and Pyret’s image library has
an image-url function. Designer [24] even offers an emoji
function. There are lots of fun graphics out there, and letting
students select custom images has been shown to contribute
to their sense of ownership over the resulting program [45].
This therefore sounds like a great feature (and it can be, in
the right context).
However, our anecdotal experience suggests that once

this possibility is revealed, many students perceive writing
a program to create a graphic as much less interesting. They
frequently spend time searching for fancy images online
and lose focus on what the graphical programming was
intended to highlight. If the goal is to use graphics to teach
decomposition and related concepts—as it is for us—then
external images are distracting and potentially demotivating.

3.2.2 Rich APIs shift the emphasis from program-
ming to libraries and ‘spoil’ opportunities for learning.
Alphonce and Ventura, introducing an educational graphics
library, remark on a common complaint: “non-standard li-
braries are a waste of time since students will not use them
outside ... the one course” [2]. Their retort is also typical:
“we are not teaching students the library, we are teaching
students object-orientation using the library as a supportive
mechanism” (ibid.).
Every library introduced in a course adds something to

what students need to learn. How much is added may vary
significantly, depending on factors such as API size. Since
time is scarce, it is important that students invest as much
of theirs as possible on learning core content, rather than
memorizing the minutiae of a particular API or poring over
documentation.
Consider Pyret’s image module. Just for the purpose of

composing images, there are eleven functions, seven ofwhich
place an image on top of another: overlay, underlay,
overlay-align, overlay-xy, overlay-onto-offset,
underlay-align, and underlay-xy. There are also ten
functions for specifying triangles in various ways.

Rich APIs also deprive students of opportunities to learn.
For example, students could benefit from writing a function
that creates a square or places many images in a row. But if
they find canned solutions for these problems in a library,
there is little motivation to re-implement the solutions.

Libraries for novices should serve the needs of their target
audience. Experienced programmers’ convenience of always
having the right function at hand can harm learners’ engage-
ment with programming.

5

SPLASH-E ’23, October 25, 2023, Cascais, Portugal Luca Chiodini, Juha Sorva, and Matthias Hauswirth

3.3 Manageable Complexity
3.3.1 At the very beginning, some language features
are unnecessary and distracting. Beginner programmers
often resort to “bricolage”: extensive trial-and-error whose
“manifestation ... is endless debugging: try it and see what
happens” [5]. While experimentation is certainly valuable,
ineffective experimentation is common and leads to frus-
tration and poor learning outcomes. Even when a student
writes a program that produces the correct output, there
is no guarantee of understanding—this has been recently
demonstrated in multiple studies (e.g., [27, 32]). As teachers,
our aim is to ensure that learners understand the source code
they write. This means that we must be careful to introduce
new programming language constructs at a pace that novices
can keep up with.

Graphics libraries vary in which language constructs they
require. For example, Listing 1 features instantiations with
and without parameters, method invocations, and lists. In-
troducing all these constructs “from the first day” [16], as the
library’s authors suggest, may be feasible in some contexts
and under some definition of what it means to introduce a
construct. We argue, however, that this approach is incom-
patible with the goal of learners understanding the concepts
in the code they write [37]. In most circumstances, students
will need to accept parts of code as ‘something you need to
write’ with the promise that ‘one day you will understand.’

Graphics can be an excellent domain for learning object-
oriented programming; some authors explicitly advocate it
(e.g., [2, 16]). But at the very beginning of an introductory
course, object-oriented language features add complexity. To
understand the third line of Listing 1, for example, students
need to understand function invocations and how functions
(methods) relate to the objects on which they are invoked.

3.3.2 Mutability makes it harder to reason about pro-
grams. Mutable state is often introduced early, even though
it breaks referential transparency and demands a more com-
plex mental model for reasoning about programs [49]. There
is extensive research (e.g., [8, 23, 34, 42, 46]) on misconcep-
tions that novices have about assignments, both with primi-
tive values and references [34], and to (mutable) objects in
general [23].

Some graphics libraries, too, model images as objects with
a mutable state. Consider Listing 1 and a student who wishes
to add another floor to the house. A fairly typical novice intu-
ition would be to reuse the existing square (that floor refers
to) and to make a copy of it. The student may then write
floor2 = floor and floor2.moveTo(50, 237), only to
be puzzled about the unexpected result. As illustrated, muta-
ble state is closely associated with aliasing, another concept
that is fundamental but not easy: difficulties abound even
among upper-level undergraduates [15].
For these reasons, we consider mutable state a potential

pitfall in the design of graphics libraries for beginners.

4 PyTamaro’s Design and a Teaching
Approach

Our second research question seeks a design that avoids
the pitfalls identified above. In this section, we sketch an
answer by introducing PyTamaro, a minimalist library for
Python, publicly available as open source at https://github.
com/LuCEresearchlab/pytamaro. We illustrate the key as-
pects of PyTamaro’s design gradually, alongside a teaching
approach that builds on the library’s strengths, leveraging
the experience that we have accumulated over the last couple
of years while using the library in high schools and teacher-
training courses.

4.1 An Initial Example
Listing 5 below shows how to draw a simple graphic with
PyTamaro, resorting one last time to the house example of
Figure 1. Unlike our previous code listings, Listing 5 is a stan-
dalone Python program, complete with an import statement
and a function call to display the resulting graphic.

from anon import rectangle, triangle, yellow,
red, above, show_graphic↩→

floor = rectangle(100, 100, yellow)
roof = triangle(100, 100, 60, red)
house = above(roof, floor)
show_graphic(house)

Listing 5. Drawing a house with PyTamaro.

All the programming language constructs used in Listing 5
can be explained from the very beginning. This example makes
no use of method calls, lists, tuples, or even strings. In fact,
understanding it requires knowing the same programming
language constructs also used when importing and calling
a function from the standard library to compute the square
root of a number and print the result—a common example
in introductory programming without graphics.

PyTamaro belongs to the family from Section 2.3: it treats
graphics as values. Therefore, when students reason about
graphical programs, they can rely on the same mental model
that they use for expressions that operate on numbers [12].
This design choice avoids three previously identified pitfalls:
there is no global coordinate system and no stateful turtle, and
all graphics are immutable.

4.2 Defining Abstractions Early
Listing 5 looks similar to the earlier Listing 3, and indeed
the two share many key aspects. The keen eye also notices a
subtle difference: PyTamaro does not seem to have a function
for a square, such a primitive shape! This is a deliberate
design choice so as to avoid a rich API (Section 3.2.2). It is a
tempting pitfall: as a library author, it is easy to pack in all
sorts of function variants that are convenient for certain use
cases—and users often appreciate rich APIs.

6

https://github.com/LuCEresearchlab/pytamaro
https://github.com/LuCEresearchlab/pytamaro

Teaching Programming with Graphics: Pitfalls and a Solution SPLASH-E ’23, October 25, 2023, Cascais, Portugal

Since abstraction is so central to programming, we should
immerse novices in it early. One valuable way to do that is
to have learners use abstractions that somebody else defined;
this is a good place to start [7]. We argue that novices also
need early opportunities to define their own abstractions [31]
and indeed should be placed in situations that veritably beg
for them to define some.

The absence of a square function in PyTamaro introduces
one such situation into our context of simple graphics. Hav-
ing first built some graphics that include squares, learners
begin to relate to the inconvenience of having to specify
each width and each height of each square rectangle. This
motivates the definition of a general function like that in
Listing 6.

def square(side, color):
return rectangle(side, side, color)

Listing 6. A function to create a square with PyTamaro.

Implementing such a function is challenging for many
beginners [25], but the generalization pays off later when the
function can be conveniently reused to solve bigger problems.
When drawing a bigger graphic, one does not want to worry
about the details of how to build such a basic shape. At that
point, a square function comes in handy.
This build-for-reuse approach confronts the temptation

to write a lot of throw-away code that we do not bother
packaging into cleanly defined functions. Instead, students
are encouraged and supported to build their own ‘toolbox,’
enriching it with functions they implemented and deem use-
ful. Over time, they create increasingly interesting graphics
that are nevertheless entirely based on their very own code.

An auxiliary benefit of custom functions is that they help
gradually introduce type annotations (which are optional
in Python and PyTamaro). In our approach, students first
encounter types in PyTamaro’s documentation. They learn
that red is a name for a value of type Color and that above
operates on two parameters of type Graphic and returns
a value of type Graphic. Later, we encourage explicit type
annotations as in Listing 7. We have multiple reasons for
introducing type annotations to beginners: one is that types
guide the design of programs [10]; another is that types help
catch errors early. IDEs with a static type checker for Python
(e.g., Thonny [3] for education) show warnings when types
do not match, giving students rapid feedback. Types can
also help with conceptual learning. For example, beginners
have trouble with the distinction between returning a value
and printing (or otherwise reporting) a result inside a func-
tion [30]; types make the distinction explicit and checkable.

4.3 Visual Problem Decomposition
PyTamaro’s design does not expose any coordinate system
and does not maintain state; this supports clean decomposi-
tion. Below, we discuss other aspects in PyTamaro’s design

def equil_triangle(side: float,
color: Color) -> Graphic:

return triangle(side, side, 60, color)

Listing 7. A function to create an equilateral triangle, with
type annotations.

that further help students engage with decomposition de-
spite the library’s limitations—or even because of them.

4.3.1 Basic visual decomposition. Graphics in PyTamaro
make decomposition visually apparent and relatively easy
to intuit. This can be leveraged in teaching. Consider the
emblem of the International Red Cross at the top of Figure 2.
It is easy to discern visually that the emblem consists of a red
cross on a square white field. The ‘big’ problem of drawing
the entire emblem decomposes into two subproblems: draw-
ing a red cross and drawing a white field. The subproblems’
solutions compose into a solution for the whole problem, just
like the two visuals compose to produce the combined image.
There is a direct mapping between visual components and
problem decomposition; a student who engages in creating
these graphics also meaningfully engages with computing.
Crosses are not a PyTamaro primitive, so how do we

draw one? We can visually observe that the cross is made
up of two bars. We must repeatedly break down our prob-
lem into smaller ones until we reach elementary ones: a
powerful recursive process for problem-solving. Visualizing
the entire (de)composition as a tree can help to reify the
(de)composition process, and the visualization can support
explanations and discussions in class.

Figure 2. Hierarchical (de)composition of the IRC emblem.
The bars’ “cork board” background indicates transparency.

This hierarchical composition of independent subprob-
lems is enabled by two key aspects in PyTamaro. First, each
graphic is built without a notion of where it lies. There is
no global coordinate system, and we can reason about the

7

SPLASH-E ’23, October 25, 2023, Cascais, Portugal Luca Chiodini, Juha Sorva, and Matthias Hauswirth

properties of a graphic (e.g., that the horizontal bar has a cer-
tain width and height) without having to think about where
the graphic will be positioned (i.e., its coordinates). Second,
functions like above or overlay produce composite graph-
ics that are just like primitive ones in that they, too, can be
further composed.

4.3.2 Multiple ways to (de)compose. Even many simple
graphics can be (de)composed in multiple equally valid ways.
Functions in PyTamaro that combine graphics are designed
so that equally valid solutions indeed result in graphics that
are equivalent.
Just like the binary operators that children learn in basic

algebra operate on two numbers, PyTamaro’s composition
functions operate on two graphics. For example, the beside
function places two graphics next to each other, just like
+ is an operator that adds two numbers. However, unlike
the addition of numbers, the combination of graphics is not
commutative. It is visually obvious that overlaying the white
field on the red cross would have not been an equally valid
way to compose the emblem in Figure 2.

Now consider the Italian flag shown twice at the top of
Figure 3. We can trivially discern that it is made of three
rectangular bands; our elementary subproblems are to draw
those bands. It is slightly less obvious how to compose the
rectangles, given that we only have functions to combine two
graphics. As shown in Figure 3, there are multiple equally
valid compositions: we may first join the green and white
rectangles into a single graphic, then join this composite
with the red; or we may first join the white and red, and then
compose the result with the green.

Figure 3. Two different but equally valid ways to compose
the Italian flag, exploiting the associativity of beside.

The equivalence of multiple ways to compose is guaran-
teed by the associativity of PyTamaro’s composition func-
tions. This is like adding numbers: we can sum three numbers
in two ways. No matter whether we start by adding the first
or the last two numbers, the result is the same.

PyTamaro’s design satisfies certain algebraic properties to
empower students with maximum flexibility in the different
ways equivalent graphics can be composed. A side benefit is

that graphics is an interesting domain other than numbers
in which teachers and learners may revisit these properties.

4.3.3 More challenging graphics. Not all graphics can be
composed just by placing basic shapes next to each other or
overlaying them on their centers. How can we have learners
create more intricate graphics with PyTamaro and still avoid
the pitfall of local coordinates (Section 3.1.3)?

In PyTamaro, every graphic has a pinning position, a desig-
nated point where it may connect to other graphics. Graphics
are composed by aligning these positions. Pinning is invis-
ible but readily explained by a visual analogy, a ‘notional
machine’ [13] with a cork board, a pin, and paper cutouts as
described below (cf. [16]). In our teaching, we have used this
analogy both onscreen and in tangible, unplugged activities.
A graphic is represented by a paper cutout, such as a

red square, and pinned to the cork board. The place where
the pin is stuck is the graphic’s pinning position. When we
rotate a graphic, we do so around the pin. When we compose
two graphics, we align their pinning positions and stick a
pin there through both; we then staple the cutouts together
and consider the result an inseparable composite. Figure 4
illustrates the (de)composition of a graphic using pins.

Figure 4. Drawing a heart with pin and compose. The tree
leaves correspond to PyTamaro primitives.

Since there are no explicit coordinates in PyTamaro, there
are restrictions on where a pinning position may be placed.
As things stand, PyTamaro creates shapes with a sensible
default pinning position (e.g., the centroid for a triangle) and
has nine standard options for adjusting it (e.g., top_right).

8

Teaching Programming with Graphics: Pitfalls and a Solution SPLASH-E ’23, October 25, 2023, Cascais, Portugal

Once learners familiarize themselves with this way of
composing, they can draw many more challenging and in-
teresting graphics. The right-hand side of Figure 5 depicts
a Pac-Man maze built entirely by composing PyTamaro’s
primitives; the maze is just one example of the many tile-
based worlds that can be drawn. A key part of the solution
is the decomposition of the world into the various possible
tiles. The left side of Figure 5 shows four ‘corner tiles,’ two
‘straight tiles,’ two tiles for the ground containing a ‘dot’ and
a ‘pill,’ and a tile with the Pac-Man character. Drawing each
group of tiles becomes an independent subproblem, whose
solution can then be easily combined with others.

Figure 5. A Pac-Man maze (right) created out of tiles (left),
which are in turn composed from PyTamaro’s primitives.

4.3.4 Meaningful graphics. Teaching programming with
PyTamaro does not need to be limited to flags or dry geomet-
ric shapes. Students can create data visualizations that are
meaningful to them; they may then synergistically explore
the insights from the visualizations together with interesting
aspects in the programs that draw them.

Figure 6. ‘Warming stripes’ created with PyTamaro.

Figure 6 shows the famous ‘warming stripes’ visualiza-
tion of temperature anomalies over time. There are several
questions involved in creating such a graphic; here we only
explore an important one related to PyTamaro’s design.

The essence of Figure 6 is a sequence of colored rectangles
side by side. Placing many graphics in a row is indeed a
sub-task that occurs frequently. It is worthwhile to define
a general function to solve the problem once and add it to
one’s ‘toolbox’ (like square from Section 4.2).

Listing 8 shows one possible solution, which also handles
the corner cases where the list is empty or contains just
one graphic2. The implementation is short and elegant, as it
2PyTamaro does not require assignment statements. The solution can also
be implemented using recursion or reduce.

exploits the possibility of creating an empty graphic with no
area. Composing an empty graphic with any other graphic
simply results in the latter unmodified; this is no different
from adding 0 to any number. In algebra, this distinguished
element is called an identity.

def beside_list(graphics: list[Graphic]) ->
Graphic:↩→

result = empty_graphic()
for graphic in graphics:

result = beside(result, graphic)
return result

Listing 8. A general function to place many graphics next
to each other.

The set of all graphics, together with an identity and an
associative binary function for composition, forms a monoid.
The monoidal flavor in PyTamaro has been explored to an ex-
treme in Yorgey’s powerful graphics library for Haskell [52].
That library is aimed at experts and features sophisticated
concepts such as envelopes and traces; its extraordinary flex-
ibility comes at the expense of ease for novices. We concur
with Yorgey that “library design should be driven by ele-
gant underlying mathematical structures” [52]. PyTamaro’s
design gives a taste of that elegance and power to novice
programmers.

Figure 7. Three examples of meaningful graphics created
with PyTamaro: the periodic table of chemical elements (top,
first five periods only), a pie chart of area by continent (bot-
tom left), and the Swiss railway clock (bottom right).

Figure 7 shows more examples of different kinds of graph-
ics that can be meaningful to certain groups of learners.
Creating a program to draw the periodic table of elements
can reinforce concepts learned in a different subject (e.g.,
chemistry). Programming even the simple version depicted
here requires thinking about the layout of the elements in

9

SPLASH-E ’23, October 25, 2023, Cascais, Portugal Luca Chiodini, Juha Sorva, and Matthias Hauswirth

periods and groups, the sequential atomic number of each
element, and the coloring to distinguish between blocks. The
pie chart that illustrates the breakdown of area per continent
can be meaningful in the context of geography and/or data
visualization, whereas a culturally meaningful graphic such
as the Swiss railway clock represents a real-world object that
may inspire learners, sustaining the engagement.

4.4 Localizing for Human and Programming
Languages

Ideally, a graphics library for introductory programming
should be accessible to large audiences. So far, we have de-
scribed a library for beginners who program in Python and
are competent in English. These assumptions emphatically
do not hold for all beginners.

First, not all introductory courses use Python3. The mini-
malism of PyTamaro’s design reduces the cost of porting the
library to new programming languages. In fact, we have al-
ready implemented a Java library with the exact same design,
and it is being used in a first-year university course.

Second, students’ learning of programming should not be
hampered by their native language. Research has demon-
strated that the prevalence of English can be a barrier for
non-native speakers [18]. This is especially true now: stu-
dents around the world start programming at increasingly
young ages and are not necessarily comfortable reading and
writing English.

PyTamaro attends to this. The documentation is available
in multiple languages, and the entire API is localized. For ex-
ample, an Italian-speaking student can make a triangle with
triangolo, whose parameters, types, and error messages
are localized; a German-speaker can use dreieck.

5 Limitations
There are various limitations to the work presented here.

Although our guiding goals—Clean Problem Decomposi-
tion, Meaningful Engagement, andManageable Complexity—
are amply supported by the research literature, they are
certainly not the only considerations when designing a ped-
agogy. We make no claims about their superiority over other
legitimate goals in graphics-based programming education.
In Section 2, we explored this design space in order to

identify a few families of libraries, but we did not conduct a
systematic, comprehensive review of all graphics libraries
for education. Moreover, our analysis of pitfalls in Section 3
is primarily based on only three libraries that we consider
representative of the different families. We argue that certain
design choices constitute pitfalls, drawing in part on the
extant research literature and prior empirical work. However,

3PyTamaro has been originally implemented in Python to serve the needs
of our specific contexts. Despite its complexity (see [26, 37, 41]), Python is
currently a popular introductory language.

we do not have direct evidence of how frequently each pitfall
translates to problems for students in practice.
The design of any library for beginners involves major

trade-offs, and this is also true for PyTamaro. PyTamaro is
designed with certain guiding goals in mind and emphasizes
those; the choices we made in its design are not optimal or
even viable for every introductory programming context. For
example, some teaching approaches revolve around games or
simulations that take place in evolving 2D worlds; PyTamaro
is not designed for this. Placing externally loaded graphics
at arbitrary positions in a coordinate system is a powerful
feature that can be misused but does support reasonable
pedagogical goals other than the ones we have adopted here.

A major limitation of our work is that PyTamaro’s ability
to avoid the design pitfalls was analyzed from a theoretical
point of view only. Although our discussion is consistent
with our impressions from classrooms, those are only anec-
dotes. PyTamaro still lacks a rigorous empirical evaluation
to show that it is engaging for learners and useful for teach-
ing abstraction, decomposition, and more. Even less have
we shown that (de)composition skills learned through PyTa-
maro transfer to non-graphical domains, which is of course
the ultimate goal.

6 Conclusion and Future Work
In this article, we have explored the design space of educa-
tional graphics libraries in search of a design that is ideal
for teaching core programming skills to complete beginners,
with an emphasis on problem decomposition and abstraction.
Our contribution is twofold.
First, we have overviewed existing libraries, grouping

them into three families, and showed how some otherwise
perfectly legitimate design decisions might actually hinder
beginners from reaching certain important learning goals.
Second, we have presented the design rationale of a new

graphics library, PyTamaro, which avoids the pitfalls iden-
tified in existing libraries with a less-is-more design: fewer,
carefully chosen features may mean more learning. Our dis-
cussion of PyTamaro illustrates how the library may be fruit-
fully used in teaching to engage students with problem de-
composition and other powerful ideas in computing.

PyTamaro and its Java counterpart have already been used
in several courses whose target audiences range from high-
school students to future high-school teachers to computer
science undergraduates. Anecdotally, the library has been
a success, but its effectiveness has not been evaluated with
rigor. The present article informs such future research: empir-
ical studies should explore the pitfalls that we have identified
and evaluate the claimed strengths of our design.

Acknowledgments
This work was partially funded by the Swiss National Science
Foundation project 200021_184689.

10

Teaching Programming with Graphics: Pitfalls and a Solution SPLASH-E ’23, October 25, 2023, Cascais, Portugal

References
[1] Harold Abelson and Andrea diSessa. 1981. Turtle Geometry: The Com-

puter as a Medium for Exploring Mathematics. MIT Press, Cambridge,
MA, USA.

[2] Carl Alphonce and Phil Ventura. 2003. Using Graphics to Support the
Teaching of Fundamental Object-Oriented Principles in CS1. In Com-
panion of the 18th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications. ACM, Anaheim
CA USA, 156–161. https://doi.org/10.1145/949344.949391

[3] Aivar Annamaa. 2015. Introducing Thonny, a Python IDE for Learn-
ing Programming. In Proceedings of the 15th Koli Calling Conference
on Computing Education Research - Koli Calling ’15. ACM Press, Koli,
Finland, 117–121. https://doi.org/10.1145/2828959.2828969

[4] Ian Barland, Robert Bruce Findler, andMatthew Flatt. 2010. The Design
of a Functional Image Library. In Workshop on Scheme and Functional
Programming (SFP).

[5] Mordechai Ben-Ari. 2001. Constructivism in Computer Science Edu-
cation. Journal of Computers in Mathematics and Science Teaching 20,
1 (2001), 45–73.

[6] Karen Brennan and Mitchel Resnick. 2012. New Frameworks for Study-
ing and Assessing the Development of Computational Thinking. In
Proceedings of the 2012 Annual Meeting of the American Educational
Research Association, Vancouver, Canada, Vol. 1. 25.

[7] Michael E. Caspersen and Jens Bennedsen. 2007. Instructional De-
sign of a Programming Course: A Learning Theoretic Approach.
In Proceedings of the Third International Workshop on Computing
Education Research. ACM, Atlanta Georgia USA, 111–122. https:
//doi.org/10.1145/1288580.1288595

[8] Luca Chiodini, Igor Moreno Santos, Andrea Gallidabino, Anya
Tafliovich, André L. Santos, and Matthias Hauswirth. 2021. A Curated
Inventory of Programming LanguageMisconceptions. In Proceedings of
the 26th ACMConference on Innovation and Technology in Computer Sci-
ence Education V. 1 (ITiCSE ’21). Association for Computing Machinery,
New York, NY, USA, 380–386. https://doi.org/10.1145/3430665.3456343

[9] Keith Devlin. 2003. Why Universities Require Computer Science Stu-
dents to Take Math. Commun. ACM 46, 9 (Sept. 2003), 36. https:
//doi.org/10.1145/903893.903917

[10] Matthias Felleisen. 1991. On the Expressive Power of Programming
Languages. Science of Computer Programming 17, 1 (Dec. 1991), 35–75.
https://doi.org/10.1016/0167-6423(91)90036-W

[11] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. 2018. How to Design Programs, Second Edition: An
Introduction to Programming and Computing. MIT Press.

[12] Matthias Felleisen and Shriram Krishnamurthi. 2009. Why Com-
puter Science Doesn’t Matter. Commun. ACM 52, 7 (July 2009), 37–40.
https://doi.org/10.1145/1538788.1538803

[13] Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Bene-
dict du Boulay, Matthias Hauswirth, Arto Hellas, Felienne Hermans,
Colleen Lewis, Andreas Mühling, Janice L. Pearce, and Andrew Pe-
tersen. 2020. Notional Machines in Computing Education: The Edu-
cation of Attention. In Proceedings of the Working Group Reports on
Innovation and Technology in Computer Science Education (ITiCSE-WGR
’20). Association for Computing Machinery, New York, NY, USA, 21–50.
https://doi.org/10.1145/3437800.3439202

[14] Sigbjorn Finne and Simon Peyton Jones. 1995. Pictures: A Simple Struc-
tured Graphics Model. In Proceedings of the 1995 Glasgow Workshop on
Functional Programming. https://doi.org/10.14236/ewic/FP1995.6

[15] Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017.
Assessing and Teaching Scope, Mutation, and Aliasing in Upper-Level
Undergraduates. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education. ACM, Seattle Washington
USA, 213–218. https://doi.org/10.1145/3017680.3017777

[16] Michael H. Goldwasser and David Letscher. 2009. A Graphics Package
for the First Day and Beyond. ACM SIGCSE Bulletin 41, 1 (March 2009),

206–210. https://doi.org/10.1145/1539024.1508945
[17] Shuchi Grover and Satabdi Basu. 2017. Measuring Student Learning

in Introductory Block-Based Programming: Examining Misconcep-
tions of Loops, Variables, and Boolean Logic. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education
(SIGCSE ’17). Association for Computing Machinery, New York, NY,
USA, 267–272. https://doi.org/10.1145/3017680.3017723

[18] Philip J. Guo. 2018. Non-Native English Speakers Learning Com-
puter Programming: Barriers, Desires, and Design Opportunities. In
Proceedings of the 2018 CHI Conference on Human Factors in Com-
puting Systems - CHI ’18. ACM Press, Montreal QC, Canada, 1–14.
https://doi.org/10.1145/3173574.3173970

[19] Mark Guzdial. 2003. A Media Computation Course for Non-Majors. In
Proceedings of the 8th Annual Conference on Innovation and Technology
in Computer Science Education. ACM, Thessaloniki Greece, 104–108.
https://doi.org/10.1145/961511.961542

[20] Pontus Haglund, Filip Strömbäck, and Linda Mannila. 2021. Under-
standing Students’ Failure to Use Functions as a Tool for Abstraction
– An Analysis of Questionnaire Responses and Lab Assignments in a
CS1 Python Course. Informatics in Education 20, 4 (Dec. 2021), 583–614.
https://doi.org/10.15388/infedu.2021.26

[21] Brian Harvey. 1997. Computer Science Logo Style: Beyond Programming
(second ed.). Exploring with LOGO, Vol. 3. MIT Press, Cambridge, MA,
USA.

[22] Peter Henderson. 1982. Functional Geometry. In Proceedings of the
1982 ACM Symposium on LISP and Functional Programming (LFP ’82).
Association for Computing Machinery, New York, NY, USA, 179–187.
https://doi.org/10.1145/800068.802148

[23] Simon Holland, Robert Griffiths, and Mark Woodman. 1997. Avoiding
Object Misconceptions. In Proceedings of the Twenty-eighth SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ’97).
ACM, New York, NY, USA, 131–134. https://doi.org/10.1145/268084.
268132

[24] Kristina Holsapple and Austin Cory Bart. 2022. Designing Designer:
The Evidence-Oriented Design Process of a Pedagogical Interactive
Graphics Python Library. In Proceedings of the 53rd ACM Techni-
cal Symposium on Computer Science Education V. 1 (SIGCSE 2022).
Association for Computing Machinery, New York, NY, USA, 85–91.
https://doi.org/10.1145/3478431.3499363

[25] Cruz Izu and Peter Dinh. 2018. Can Novice Programmers Write C
Functions?. In 2018 IEEE International Conference on Teaching, Assess-
ment, and Learning for Engineering (TALE). IEEE, Wollongong, NSW,
965–970. https://doi.org/10.1109/TALE.2018.8615375

[26] Fionnuala Johnson, Stephen McQuistin, and John O’Donnell. 2020.
Analysis of Student Misconceptions Using Python as an Introductory
Programming Language. In Proceedings of the 4th Conference on Com-
puting Education Practice 2020. ACM, Durham United Kingdom, 1–4.
https://doi.org/10.1145/3372356.3372360

[27] Cazembe Kennedy and Eileen T. Kraemer. 2019. Qualitative Ob-
servations of Student Reasoning: Coding in the Wild. In Proceed-
ings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education. ACM, Aberdeen Scotland Uk, 224–230.
https://doi.org/10.1145/3304221.3319751

[28] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code Qual-
ity Issues in Student Programs. In Proceedings of the 2017 ACM Con-
ference on Innovation and Technology in Computer Science Education
(ITiCSE ’17). Association for Computing Machinery, New York, NY,
USA, 110–115. https://doi.org/10.1145/3059009.3059061

[29] Jonathan Knudsen. 1999. Java 2D Graphics. O’Reilly.
[30] Tobias Kohn. 2017. Teaching Python Programming to Novices: Address-

ing Misconceptions and Creating a Development Environment. Ph. D.
Dissertation. ETH Zurich. https://doi.org/10.3929/ETHZ-A-010871088

11

https://doi.org/10.1145/949344.949391
https://doi.org/10.1145/2828959.2828969
https://doi.org/10.1145/1288580.1288595
https://doi.org/10.1145/1288580.1288595
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/903893.903917
https://doi.org/10.1145/903893.903917
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1145/1538788.1538803
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.14236/ewic/FP1995.6
https://doi.org/10.1145/3017680.3017777
https://doi.org/10.1145/1539024.1508945
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1145/3173574.3173970
https://doi.org/10.1145/961511.961542
https://doi.org/10.15388/infedu.2021.26
https://doi.org/10.1145/800068.802148
https://doi.org/10.1145/268084.268132
https://doi.org/10.1145/268084.268132
https://doi.org/10.1145/3478431.3499363
https://doi.org/10.1109/TALE.2018.8615375
https://doi.org/10.1145/3372356.3372360
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.3929/ETHZ-A-010871088

SPLASH-E ’23, October 25, 2023, Cascais, Portugal Luca Chiodini, Juha Sorva, and Matthias Hauswirth

[31] Herman Koppelman and Betsy van Dijk. 2010. Teaching Abstrac-
tion in Introductory Courses. In Proceedings of the Fifteenth An-
nual Conference on Innovation and Technology in Computer Science
Education - ITiCSE ’10. ACM Press, Bilkent, Ankara, Turkey, 174.
https://doi.org/10.1145/1822090.1822140

[32] Teemu Lehtinen, Aleksi Lukkarinen, and Lassi Haaranen. 2021. Stu-
dents Struggle to Explain Their Own Program Code. In Proceedings of
the 26th ACMConference on Innovation and Technology in Computer Sci-
ence Education V. 1. 206–212. https://doi.org/10.1145/3430665.3456322
arXiv:2104.06710 [cs]

[33] Aleksi Lukkarinen and Juha Sorva. 2016. Classifying the Tools of
Contextualized Programming Education and Forms of Media Com-
putation. In Proceedings of the 16th Koli Calling International Con-
ference on Computing Education Research. ACM, Koli Finland, 51–60.
https://doi.org/10.1145/2999541.2999551

[34] Linxiao Ma, John Ferguson, Marc Roper, and Murray Wood. 2007.
Investigating the Viability of Mental Models Held by Novice Pro-
grammers. In Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education. ACM, Covington Kentucky USA, 499–503.
https://doi.org/10.1145/1227310.1227481

[35] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2011.
Habits of Programming in Scratch. In Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science
Education (ITiCSE ’11). Association for Computing Machinery, New
York, NY, USA, 168–172. https://doi.org/10.1145/1999747.1999796

[36] Bartosz Milewski. 2018. Category Theory for Programmers. Blurb.
[37] Craig S. Miller and Amber Settle. 2016. Some Trouble with Trans-

parency: An Analysis of Student Errors with Object-oriented Python.
In Proceedings of the 2016 ACM Conference on International Comput-
ing Education Research. ACM, Melbourne VIC Australia, 133–141.
https://doi.org/10.1145/2960310.2960327

[38] Seymour A. Papert. 1971. A Computer Laboratory for Elementary
Schools. Technical Report AIM-246 / LOGO Memo 1. MIT.

[39] Seymour A. Papert and Cynthia Solomon. 1971. Twenty Things To Do
With A Computer. Technical Report AIM-248 / LOGO Memo 3. MIT.

[40] D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Sys-
tems into Modules. Commun. ACM 15, 12 (Dec. 1972), 1053–1058.
https://doi.org/10.1145/361598.361623

[41] Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner War-
ren, Daniel Patterson, Junsong Li, Anand Chitipothu, and Shriram
Krishnamurthi. 2013. Python: The Full Monty. In Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages & Applications (OOPSLA ’13). ACM, New

York, NY, USA, 217–232. https://doi.org/10.1145/2509136.2509536
[42] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and

Other Difficulties in Introductory Programming: A Literature Review.
ACM Transactions on Computing Education 18, 1 (Oct. 2017), 1–24.
https://doi.org/10.1145/3077618

[43] Eric Roberts and Keith Schwarz. 2013. A Portable Graphics Library
for Introductory CS. In Proceedings of the 18th ACM Conference on
Innovation and Technology in Computer Science Education - ITiCSE ’13.
ACM Press, Canterbury, England, UK, 153. https://doi.org/10.1145/
2462476.2465590

[44] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learn-
ing and Teaching Programming: A Review and Discussion. Computer
Science Education 13, 2 (June 2003), 137–172. https://doi.org/10.1076/
csed.13.2.137.14200

[45] Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi Fisler. 2018.
Creativity, Customization, and Ownership: Game Design in Bootstrap:
Algebra. In Proceedings of the 49th ACM Technical Symposium on Com-
puter Science Education. ACM, Baltimore Maryland USA, 161–166.
https://doi.org/10.1145/3159450.3159471

[46] Juha Sorva. 2023. Misconceptions and the Beginner Programmer. In
Computer Science Education : Perspectives on Teaching and Learning in
School (second ed.), Sue Sentance, Erik Barendsen, Nicol R. Howard,
and Carsten Schulte (Eds.). Bloomsbury Academic, London, 259–273.

[47] Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. 1974.
Structured Design. IBM Systems Journal 13, 2 (1974), 115–139.

[48] Vicki Trowler. 2010. Student Engagement Literature Review. The Higher
Education Academy, York.

[49] Preston Tunnell Wilson, Kathi Fisler, and Shriram Krishnamurthi.
2018. Evaluating the Tracing of Recursion in the Substitution No-
tional Machine. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education (SIGCSE ’18). ACM, New York, NY, USA,
1023–1028. https://doi.org/10.1145/3159450.3159479

[50] David Weintrop, Alexandria K. Hansen, Danielle B. Harlow, and
Diana Franklin. 2018. Starting from Scratch: Outcomes of Early
Computer Science Learning Experiences and Implications for What
Comes Next. In Proceedings of the 2018 ACM Conference on Interna-
tional Computing Education Research. ACM, Espoo Finland, 142–150.
https://doi.org/10.1145/3230977.3230988

[51] Jeannette M. Wing. 2006. Computational Thinking. Commun. ACM
49, 3 (March 2006), 33–35. https://doi.org/10.1145/1118178.1118215

[52] Brent A. Yorgey. 2012. Monoids: Theme and Variations (Functional
Pearl). ACM SIGPLAN Notices 47, 12 (Sept. 2012), 105–116. https:
//doi.org/10.1145/2430532.2364520

Received 2023-07-27; accepted 2023-08-24

12

https://doi.org/10.1145/1822090.1822140
https://doi.org/10.1145/3430665.3456322
https://arxiv.org/abs/2104.06710
https://doi.org/10.1145/2999541.2999551
https://doi.org/10.1145/1227310.1227481
https://doi.org/10.1145/1999747.1999796
https://doi.org/10.1145/2960310.2960327
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/2509136.2509536
https://doi.org/10.1145/3077618
https://doi.org/10.1145/2462476.2465590
https://doi.org/10.1145/2462476.2465590
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1145/3159450.3159471
https://doi.org/10.1145/3159450.3159479
https://doi.org/10.1145/3230977.3230988
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/2430532.2364520
https://doi.org/10.1145/2430532.2364520

	Abstract
	1 Introduction
	2 Related Work: Graphics for Education
	2.1 Graphics on a Canvas with Coordinates
	2.2 Turtle Graphics
	2.3 Graphics as Values

	3 Pitfalls in Existing Libraries
	3.1 Clean Problem Decomposition
	3.2 Meaningful Engagement
	3.3 Manageable Complexity

	4 PyTamaro's Design and a Teaching Approach
	4.1 An Initial Example
	4.2 Defining Abstractions Early
	4.3 Visual Problem Decomposition
	4.4 Localizing for Human and Programming Languages

	5 Limitations
	6 Conclusion and Future Work
	Acknowledgments
	References

